杨慧, 熊媛, 程龙, 钱铭, 吉利. 基于网络药理学及分子对接探讨灯盏生脉胶囊治疗冠心病的作用机制[J]. 实用临床医药杂志, 2024, 28(9): 1-8, 14. DOI: 10.7619/jcmp.20240541
引用本文: 杨慧, 熊媛, 程龙, 钱铭, 吉利. 基于网络药理学及分子对接探讨灯盏生脉胶囊治疗冠心病的作用机制[J]. 实用临床医药杂志, 2024, 28(9): 1-8, 14. DOI: 10.7619/jcmp.20240541
YANG Hui, XIONG Yuan, CHENG Long, QIAN Ming, JI Li. Mechanism of Dengzhan Shengmai capsule in treating coronary heart disease based on network pharmacology and molecular docking technology[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 1-8, 14. DOI: 10.7619/jcmp.20240541
Citation: YANG Hui, XIONG Yuan, CHENG Long, QIAN Ming, JI Li. Mechanism of Dengzhan Shengmai capsule in treating coronary heart disease based on network pharmacology and molecular docking technology[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 1-8, 14. DOI: 10.7619/jcmp.20240541

基于网络药理学及分子对接探讨灯盏生脉胶囊治疗冠心病的作用机制

Mechanism of Dengzhan Shengmai capsule in treating coronary heart disease based on network pharmacology and molecular docking technology

  • 摘要:
    目的 基于网络药理学结合分子对接技术探讨灯盏生脉胶囊(DZSM)治疗冠心病(CHD)的潜在作用靶点及机制。
    方法 采用TCMSP和ETCM数据库检索DZSM的化学成分; 采用Swiss ADME数据库进行活性成分筛选, Swiss Target Prediction数据库获取活性成分的潜在靶点。检索GeneCards和DisGeNET数据库获取CHD靶点, 构建"DZSM-活性成分-CHD靶点"网络。对关键活性成分和核心靶点进行分子对接, 验证结合特性。于DAVID数据库进行基因本体(GO)和京都基因和基因组百科全书(KEGG)富集分析。采用氧化型低密度脂蛋白(ox-LDL)诱导的小鼠巨噬细胞系(RAW264.7细胞)模型体外验证野黄芩苷对CHD的治疗作用。采用Griess反应测定细胞上清液中一氧化氮(NO)生成量。采用实时定量聚合酶链反应(qRT-PCR)检测丝氨酸/苏氨酸激酶(AKT)表达水平; 采用蛋白质免疫印迹试验(Western Blot)检测AKT蛋白表达和磷酸化水平。
    结果 共获得DZSM的56个活性化合物, 通过作用于136个靶点调控CHD进展。其中山奈酚、槲皮素、木犀草素、芹菜素、野黄芩素、6-羟基山奈酚、野黄芩苷、对壬基酚、麦冬皂苷D和人参皂苷Rb1能够调控共113个CHD靶点。AKT1SRCPPARGEGFRESR1PTGS2SIRT1MAPK1MMP9PPARA基因为DZSM治疗CHD的核心靶点。分子对接结果显示, 关键活性成分与核心靶点具有良好的结合特性。体外实验结果表明, 野黄芩苷可减少巨噬细胞一氧化氮生成, 增加AKT mRNA、AKT蛋白表达和磷酸化水平(P < 0.05)。KEGG富集分析显示, DZSM主要通过调控癌症通路、内分泌抵抗、糖尿病并发症中的AGE-RAGE信号通路、流体剪切应力与动脉粥样硬化、脂质与动脉粥样硬化、松弛素信号通路等途径治疗CHD。
    结论 DZSM通过多成分、多靶点、多途径发挥治疗CHD的作用。

     

    Abstract:
    Objective To explore the potential target and mechanism of Dengzhan Shengmai capsule (DZSM) in the treatment of coronary heart disease (CHD) based on network pharmacology and molecular docking technology.
    Methods TCMSP and ETCM databases were employed to search the chemical components of DZSM. Swiss ADME database was used to screen active ingredients, and Swiss Target Prediction database was used to obtain potential targets of active ingredients. The CHD target was obtained by searching GeneCards and DisGeNET databases, and the DZSM-active ingredient-CHD target network was constructed. Molecular docking of key active ingredients and core targets was performed to verify binding properties. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed in the DAVID database. A mouse macrophage cell line (RAW264.7 cells) model induced by oxidized low density lipoprotein (ox-LDL) was used to test the therapeutic effect of scutellarin on CHD in vitro. The production of nitric oxide (NO) in cell supernatant was measured by Griess reaction. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of serine/threonine kinase (AKT); The expression and phosphorylation of AKT protein were detected by Western Blot.
    Results A total of 56 active compounds of DZSM were obtained to regulate CHD progression by acting on 136 targets. Among them, kaempferol, quercetin, luteolin, apigenin, scutellarein, 6-hydroxykaempferol, scutellarin, nonylphenol, Ophiopogonin D, and Ginsenoside Rb1 could regulate 113 CHD targets. AKT1, SRC, PPARG, EGFR, ESR1, PTGS2, SIRT1, MAPK1, MMP9 and PPARA genes were the core targets of DZSM therapy for CHD. Molecular docking showed that the key active ingredients and core targets had good binding properties. The results of in vitro experiments showed that scutellarin could reduce the production of nitric oxide and increase the level of AKT, protein expression and phosphorylation in macrophages (P < 0.05). KEGG enrichment analysis showed that DZSM treated CHD mainly by regulating cancer pathways, endocrine resistance, AGE-RAGE signaling pathway in diabetic complications, fluid shear stress and atherosclerosis, lipid and atherosclerosis, and relaxin signaling pathway.
    Conclusion DZSM plays a role in the treatment of CHD through multi-component, multi-target and multi-pathway.

     

/

返回文章
返回