Citation: |
ZHOU Lina, HAN Yanhua, GENG Tiantian, LIU Li. Research progress in effects of hyperandrogenin and insulin resistance on placental pathology of polycystic ovary syndrome [J]. Journal of Clinical Medicine in Practice, 2023, 27(11): 137-141. DOI: 10.7619/jcmp.20223478 |
Polycystic ovary syndrome (PCOS) is the most common endocrine disease in women of childbearing age, affecting women′s reproduction, metabolism and other aspect of patients. The placenta is a key medium that affects the outcome of pregnancy and childbirth and the development of the offspring. The abnormal placental structure and function caused by prenatal hyperandrogenism and abnormal glucose and lipid metabolism environment may be the main reason for the low birth weight, macrosomia, and even endocrine and metabolic system diseases after adulthood in the offspring of PCOS. This article reviewed the pathological effects of hyperandrogenin and insulin resistance on the placenta of PCOS, summarized the research results of PCOS related placental dysfunction, explored the causes of placental structure and function abnormalities in PCOS pregnancy and the corresponding placental pathological characteristics, so as to provide a reference for targeted treatment to prevent PCOS related pregnancy complications and PCOS related diseases in the offspring.
[1] |
GOODMAN N F, COBIN R H, FUTTERWEIT W, et al. Guide to the best practices in the evaluation and treatment of polycystic ovary syndrome[J]. Endocr Pract, 2015, 21(12): 1415-1426. doi: 10.4158/EP15748.DSCPT2
|
[2] |
董亚光, 朱琳, 陈浩暘. 多囊卵巢综合征产科并发症及其机制的研究进展[J]. 实用临床医药杂志, 2022, 26(9): 112-116. doi: 10.7619/jcmp.20214639
|
[3] |
江波. 代谢相关性多囊卵巢综合征及其理论基础[J]. 实用临床医药杂志, 2021, 25(2): 1-4, 9. doi: 10.7619/jcmp.20210388
|
[4] |
栗凤霞, 王艳硕, 史艳想, 等. 维生素E联合二甲双胍治疗对多囊卵巢综合征不孕症患者的影响[J]. 实用临床医药杂志, 2022, 26(14): 97-100, 104. doi: 10.7619/jcmp.20220640
|
[5] |
AVERSA A, VIGNERA S L, RAGO R, et al. Fundamental concepts and novel aspects of polycystic ovarian syndrome: expert consensus resolutions[J]. Front Endocrinol, 2020, 11: 516. doi: 10.3389/fendo.2020.00516
|
[6] |
KELLEY A S, SMITH Y R, PADMANABHAN V. A narrative review of placental contribution to adverse pregnancy outcomes in women with polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 2019, 104(11): 5299-5315. doi: 10.1210/jc.2019-00383
|
[7] |
PADMANABHAN V, CARDOSO R C, PUTTABYATAPPA M. Developmental programming, a pathway to disease[J]. Endocrinology, 2016, 157(4): 1328-1340. doi: 10.1210/en.2016-1003
|
[8] |
MEAKIN A S, CLIFTON V L. Review: understanding the role of androgens and placental AR variants: insight into steroid-dependent fetal-placental growth and development[J]. Placenta, 2019, 84: 63-68. doi: 10.1016/j.placenta.2019.03.006
|
[9] |
FILIPPOU P, HOMBURG R. Is foetal hyperexposure to androgens a cause of PCOS?[J]. Hum Reprod Update, 2017, 23(4): 421-432. doi: 10.1093/humupd/dmx013
|
[10] |
GLINTBORG D, JENSEN R C, BENTSEN K, et al. Testosterone levels in third trimester in polycystic ovary syndrome: Odense child cohort[J]. J Clin Endocrinol Metab, 2018, 103(10): 3819-3827. doi: 10.1210/jc.2018-00889
|
[11] |
王园林, 张青, 张方芳, 等. 宫内高雄环境对多囊卵巢综合征子代的影响[J]. 华中科技大学学报: 医学版, 2019, 48(6): 742-746. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYX201906023.htm
|
[12] |
BECKETT E M, ASTAPOVA O, STECKLER T L, et al. Developmental programing: impact of testosterone on placental differentiation[J]. Reproduction, 2014, 148(2): 199-209. doi: 10.1530/REP-14-0055
|
[13] |
MALIQUEO M, LARA H E, S?NCHEZ F, et al. Placental steroidogenesis in pregnant women with polycystic ovary syndrome[J]. Eur J Obstet Gynecol Reprod Biol, 2013, 166(2): 151-155. doi: 10.1016/j.ejogrb.2012.10.015
|
[14] |
DAAN N M, KOSTER M P, STEEGERS-THEUNISSEN R P, et al. Endocrine and cardiometabolic cord blood characteristics of offspring born to mothers with and without polycystic ovary syndrome[J]. Fertil Steril, 2017, 107(1): 261-268. doi: 10.1016/j.fertnstert.2016.09.042
|
[15] |
CAANEN M R, KUIJPER E A, HOMPES P G, et al. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome[J]. Eur J Endocrinol, 2016, 174(1): 25-32. doi: 10.1530/EJE-15-0699
|
[16] |
ANDERSON H, FOGEL N, GREBE S K, et al. Infants of women with polycystic ovary syndrome have lower cord blood androstenedione and estradiol levels[J]. J Clin Endocrinol Metab, 2010, 95(5): 2180-2186. doi: 10.1210/jc.2009-2651
|
[17] |
DUAN C L, PEI T J, LI Y J, et al. Androgen levels in the fetal cord blood of children born to women with polycystic ovary syndrome: a meta-analysis[J]. Reprod Biol Endocrinol, 2020, 18(1): 81. doi: 10.1186/s12958-020-00634-8
|
[18] |
PARSONS A M, BOUMA G J. A potential role and contribution of androgens in placental development and pregnancy[J]. Life, 2021, 11(7): 644. doi: 10.3390/life11070644
|
[19] |
STENER-VICTORIN E, PADMANABHAN V, WALTERS K A, et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome[J]. Endocr Rev, 2020, 41(4): bnaa010. doi: 10.1210/endrev/bnaa010
|
[20] |
ABBOTT D H, DUMESIC D A, LEVINE J E. Hyperandrogenic origins of polycystic ovary syndrome -implications for pathophysiology and therapy[J]. Expert Rev Endocrinol Metab, 2019, 14(2): 131-143. doi: 10.1080/17446651.2019.1576522
|
[21] |
SUN M, MALIQUEO M, BENRICK A, et al. Maternal androgen excess reduces placental and fetal weights, increases placental steroidogenesis, and leads to long-term health effects in their female offspring[J]. Am J Physiol Endocrinol Metab, 2012, 303(11): E1373-E1385. doi: 10.1152/ajpendo.00421.2012
|
[22] |
SILVA J F, SERAKIDES R. Intrauterine trophoblast migration: a comparative view of humans and rodents[J]. Cell Adh Migr, 2016, 10(1/2): 88-110.
|
[23] |
CHRISTIANS J K, GRYNSPAN D, GREENWOOD S L, et al. The problem with using the birthweight: placental weight ratio as a measure of placental efficiency[J]. Placenta, 2018, 68: 52-58. doi: 10.1016/j.placenta.2018.06.311
|
[24] |
PADMANABHAN V, VEIGA-LOPEZ A. Animal models of the polycystic ovary syndrome phenotype[J]. Steroids, 2013, 78(8): 734-740. doi: 10.1016/j.steroids.2013.05.004
|
[25] |
GOPALAKRISHNAN K, MISHRA J S, CHINNATHAMBI V, et al. Elevated testosterone reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant rats[J]. Hypertension, 2016, 67(3): 630-639. doi: 10.1161/HYPERTENSIONAHA.115.06946
|
[26] |
SHAH A B, NIVAR I, SPEELMAN D L. Elevated androstenedione in young adult but not early adolescent prenatally androgenized female rats[J]. PLoS One, 2018, 13(5): e0196862. doi: 10.1371/journal.pone.0196862
|
[27] |
DOMONKOS E, BORBÉLYOVÁ V, KOLÁTOROVÁ L, et al. Sex differences in the effect of prenatal testosterone exposure on steroid hormone production in adult rats[J]. Physiol Res, 2017, 66(Suppl 3): S367-S374.
|
[28] |
STENER-VICTORIN E. Update on animal models of polycystic ovary syndrome[J]. Endocrinology, 2022, 163(12): bqac164. doi: 10.1210/endocr/bqac164
|
[29] |
KUMAR S, GORDON G H, ABBOTT D H, et al. Androgens in maternal vascular and placental function: implications for preeclampsia pathogenesis[J]. Reproduction, 2018, 156(5): R155-R167.
|
[30] |
METZLER V M, BROT S D, ROBINSON R S, et al. Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development[J]. Placenta, 2017, 56: 79-85. doi: 10.1016/j.placenta.2017.02.018
|
[31] |
WILLIAMS C J, CHU A, JEFFERSON W N, et al. Epithelial membrane protein 2 (EMP2) deficiency alters placental angiogenesis, mimicking features of human placental insufficiency[J]. J Pathol, 2017, 242(2): 246-259. doi: 10.1002/path.4893
|
[32] |
FURUKAWA S, TSUJI N, HAYASHI S, et al. Effects of testosterone on rat placental development[J]. J Toxicol Pathol, 2022, 35(1): 37-44. doi: 10.1293/tox.2021-0035
|
[33] |
HU M, ZHANG Y H, GUO X Z, et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production[J]. Am J Physiol Endocrinol Metab, 2019, 316(5): E794-E809. doi: 10.1152/ajpendo.00359.2018
|
[34] |
BROWN S H, EATHER S R, FREEMAN D J, et al. A lipidomic analysis of placenta in preeclampsia: evidence for lipid storage[J]. PLoS One, 2016, 11(9): e0163972. doi: 10.1371/journal.pone.0163972
|
[35] |
SHARIFZADEH F, KASHANIAN M, FATEMI F. A comparison of serum androgens in pre-eclamptic and normotensive pregnant women during the third trimester of pregnancy[J]. Gynecol Endocrinol, 2012, 28(10): 834-836. doi: 10.3109/09513590.2012.683061
|
[36] |
WRIGHT D, WRIGHT A, NICOLAIDES K H. The competing risk approach for prediction of preeclampsia[J]. Am J Obstet Gynecol, 2020, 223(1): 12-23. e7. doi: 10.1016/j.ajog.2019.11.1247
|
[37] |
PALOMBA S, FALBO A, CHIOSSI G, et al. Lipid profile in nonobese pregnant women with polycystic ovary syndrome: a prospective controlled clinical study[J]. Steroids, 2014, 88: 36-43. doi: 10.1016/j.steroids.2014.06.005
|
[38] |
SOTO E, ROMERO R, KUSANOVIC J P, et al. Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion[J]. J Matern Fetal Neonatal Med, 2012, 25(5): 498-507. doi: 10.3109/14767058.2011.591461
|
[39] |
YANG Y, WANG Y X, LV Y, et al. Dissecting the roles of lipids in preeclampsia[J]. Metabolites, 2022, 12(7): 590. doi: 10.3390/metabo12070590
|
[40] |
HARAM K, MORTENSEN J H, MYKING O, et al. The role of oxidative stress, adhesion molecules and antioxidants in preeclampsia[J]. Curr Hypertens Rev, 2019, 15(2): 105-112. doi: 10.2174/1573402115666190119163942
|
[41] |
ROMERO R, EREZ O, HVTTEMANN M, et al. Metformin, the aspirin of the 21st century: itsrole in gestational diabetes mellitus, prevention of preeclampsia and cancer, andthe promotion of longevity[J]. Am J Obstet Gynecol, 2017, 217(3): 282-302. doi: 10.1016/j.ajog.2017.06.003
|
[42] |
TRAN H T, LIONG S, LIM R, et al. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle[J]. PLoS One, 2017, 12(3): e0173373. doi: 10.1371/journal.pone.0173373
|
[43] |
LADYMAN S R, BROOKS V L. Central actions of insulin during pregnancy and lactation[J]. J Neuroendocrinol, 2021, 33(4): e12946.
|
[44] |
STERN C, SCHWARZ S, MOSER G, et al. Placental endocrine activity: adaptation and disruption of maternal glucose metabolism in pregnancy and the influence of fetal sex[J]. Int J Mol Sci, 2021, 22(23): 12722. doi: 10.3390/ijms222312722
|
[45] |
GABBAY-BENZIV R, BASCHAT A A. Gestational diabetes as one of the "great obstetrical syndromes": the maternal, placental, and fetal dialog[J]. Best Pract Res Clin Obstet Gynaecol, 2015, 29(2): 150-155. doi: 10.1016/j.bpobgyn.2014.04.025
|
[46] |
NADERPOOR N, SHORAKAE S, COURTEN B D, et al. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis[J]. Hum Reprod Update, 2016, 22(3): 408-409. doi: 10.1093/humupd/dmv063
|
[47] |
SIMPSON S, SMITH L, BOWE J. Placental peptides regulating islet adaptation to pregnancy: clinical potential in gestational diabetes mellitus[J]. Curr Opin Pharmacol, 2018, 43: 59-65. doi: 10.1016/j.coph.2018.08.004
|
[48] |
TUMMINIA A, SCALISI N M, MILLUZZO A, et al. Maternal diabetes impairs insulin and IGF-1 receptor expression and signaling in human placenta[J]. Front Endocrinol, 2021, 12: 621680. doi: 10.3389/fendo.2021.621680
|
[49] |
JAMES-ALLAN L B, ARBET J, TEAL S B, et al. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta[J]. J Clin Endocrinol Metab, 2019, 104(9): 4225-4238. doi: 10.1210/jc.2018-02778
|
[50] |
RUIZ-PALACIOS M, PRIETO-SÁNCHEZ M T, RUIZ-ALCARAZ A J, et al. Insulin treatment may alter fatty acid carriers in placentas from gestational diabetes subjects[J]. Int J Mol Sci, 2017, 18(6): 1203. doi: 10.3390/ijms18061203
|
[51] |
MAYAMA R, IZAWA T, SAKAI K, et al. Improvement of insulin sensitivity promotes extravillous trophoblast cell migration stimulated by insulin-like growth factor-Ⅰ[J]. Endocr J, 2013, 60(3): 359-368. doi: 10.1507/endocrj.EJ12-0241
|
[52] |
JAKUBOWICZ D J, ESSAH P A, SEPPÄLÄ M, et al. Reduced serum glycodelin and insulin-like growth factor-binding protein-1 in women with polycystic ovary syndrome during first trimester of pregnancy[J]. J Clin Endocrinol Metab, 2004, 89(2): 833-839. doi: 10.1210/jc.2003-030975
|
[53] |
POWE C E. Early pregnancy biochemical predictors of gestational diabetes mellitus[J]. Curr Diab Rep, 2017, 17(2): 12. doi: 10.1007/s11892-017-0834-y
|
[54] |
MENG Q, SHAO L, LUO X C, et al. Expressions of VEGF-A and VEGFR-2 in placentae from GDM pregnancies[J]. Reprod Biol Endocrinol, 2016, 14(1): 61. doi: 10.1186/s12958-016-0191-8
|
[55] |
ZHOU J, NI X T, HUANG X J, et al. Potential role of hyperglycemia in fetoplacental endothelial dysfunction in gestational diabetes mellitus[J]. Cell Physiol Biochem, 2016, 39(4): 1317-1328. doi: 10.1159/000447836
|
[56] |
SCHANTON M, MAYMÓ J L, PÉREZ-PÉREZ A, et al. Involvement of leptin in the molecular physiology of the placenta[J]. Reproduction, 2018, 155(1): R1-R12. doi: 10.1530/REP-17-0512
|
[57] |
WU W, TAN Q Y, XI F F, et al. NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency[J]. Exp Ther Med, 2022, 23(1): 94.
|
[58] |
BONGRANI A, MELLOUK N, RAME C, et al. Ovarian expression of adipokines in polycystic ovary syndrome: a role for chemerin, omentin, and apelin in follicular growth arrest and ovulatory dysfunction[J]. Int J Mol Sci, 2019, 20(15): 3778. doi: 10.3390/ijms20153778
|
1. |
木国法,李旭,龚应玲. 白细胞介素-4、瘦素、趋化素与肥胖型哮喘患儿病情程度的关系及预测哮喘控制的价值. 实用临床医药杂志. 2025(03): 108-113 .
![]() | |
2. |
杨洁. 儿保门诊小儿骨密度检测结果分析及干预. 婚育与健康. 2024(06): 97-99 .
![]() | |
3. |
高诗宇,吴力群,马佳,李盼盼,路晨,聂力. 基于网络药理学和分子对接技术探讨缓哮六安煎治疗儿童支气管哮喘的作用机制. 现代中西医结合杂志. 2022(11): 1513-1520 .
![]() | |
4. |
陈春娟,蔡剑英,刘凤林. 吸入性糖皮质激素长期低剂量应用对轻中度支气管哮喘儿童生长发育的影响分析. 贵州医药. 2022(10): 1574-1575 .
![]() | |
5. |
安家,李霞,李虹霖,杜淑玲. 小儿咳嗽变异性哮喘患儿骨代谢指标水平及其临床意义. 系统医学. 2022(21): 1-5 .
![]() |