Citation: | WANG Yulei, ZHOU Mingwang, JI Xing, SU Yaohui, WEI Changhao, CHEN Wei, FU Zhibin, LI Shenghua. Research progress in the pathogenesis of congenital club foot[J]. Journal of Clinical Medicine in Practice, 2021, 25(8): 109-112. DOI: 10.7619/jcmp.20200626 |
[1] |
KHANNA V, VAISHYA R. Assessment of Ponseti technique for clubfoot[J]. Apollo Med, 2017, 14(1): 31-33. doi: 10.1016/j.apme.2017.02.006
|
[2] |
SMYTHE T, KUPER H, Macleod D, et al. Birth prevalence of congenital talipes equinovarus in low-and middle-income countries: a systematic review and meta-analysis[J]. Trop Med Int Health, 2017, 22(3): 269-285. doi: 10.1111/tmi.12833
|
[3] |
BACINO C A, Hecht J T. Etiopathogenesis of equinovarus foot malformations[J]. Eur J Med Genet, 2014, 57(8): 473-479. doi: 10.1016/j.ejmg.2014.06.001
|
[4] |
ZIONTS L E, JEW M H, EBRAMZADEH E, et al. The influence of sex and laterality on clubfoot severity[J]. J Pediatr Orthop, 2017, 37(2): e129-e133. doi: 10.1097/BPO.0000000000000603
|
[5] |
BASIT S, KHOSHHAL K I. Genetics of clubfoot; recent progress and future perspectives[J]. Eur J Med Genet, 2018, 61(2): 107-113. doi: 10.1016/j.ejmg.2017.09.006
|
[6] |
DOBBS M B, GURNETT C A. The 2017 ABJS nicolas andry award: advancing personalized medicine for clubfoot through translational research[J]. Clin Orthop Relat Res, 2017, 475(6): 1716-1725. doi: 10.1007/s11999-017-5290-0
|
[7] |
WANG Y H. Relationship between HOX gene and pediatric congenital clubfoot[J]. Exp Ther Med, 2018, 15(6): 4861-4865. http://europepmc.org/abstract/MED/29805506
|
[8] |
ALVARADO D M, MCCALL K, HECHT J T, et al. Deletions of 5'HOXC genes are associated with lower extremity malformations, including clubfoot and vertical talus[J]. J Med Genet, 2016, 53(4): 250-255. doi: 10.1136/jmedgenet-2015-103505
|
[9] |
王大佳, 马瑞雪, 陈秋, 等. 先天性马蹄内翻足与HoxD基因传递连锁不平衡研究[J]. 中华小儿外科杂志, 2003, 24(4): 348-350. doi: 10.3760/cma.j.issn.0253-3006.2003.04.018
|
[10] |
WANG L L, FU W N, LI-LING J, et al. HOXD13 may play a role in idiopathic congenital clubfoot by regulating the expression of FHL1[J]. Cytogenet Genome Res, 2008, 121(3/4): 189-195. http://www.ncbi.nlm.nih.gov/pubmed/18758158
|
[11] |
RAINES A M, MAGELLA B, ADAM M, et al. Key pathways regulated by HoxA9, 10, 11/HoxD9, 10, 11 during limb development[J]. BMC Dev Biol, 2015, 15: 28-31. doi: 10.1186/s12861-015-0078-5
|
[12] |
ESTER A R, WEYMOUTH K S, BURT A, et al. Altered transmission of HOX and apoptotic SNPs identify a potential common pathway for clubfoot[J]. Am J Med Genet A, 2009, 149A(12): 2745-2752. doi: 10.1002/ajmg.a.33130
|
[13] |
CHANG S L, CHAN T C, CHEN T J, et al. HOXC6 overexpression is associated with ki-67 expression and poor survival in NPC patients[J]. J Cancer, 2017, 8(9): 1647-1654. doi: 10.7150/jca.18893
|
[14] |
任舒月, 麻宏伟, 姜俊, 等. 先天性马蹄内翻足与PAX5、PAX6和TBX3基因传递不平衡研究[J]. 中华小儿外科杂志, 2004, 25(5): 444-447. doi: 10.3760/cma.j.issn.0253-3006.2004.05.018
|
[15] |
MENKE D B, GUENTHER C, KINGSLEY D M. Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs[J]. Development, 2008, 135(15): 2543-2553. doi: 10.1242/dev.017384
|
[16] |
ALVARADO D M, AFEROL H, MCCALL K, et al. Familial isolated clubfoot is associated with recurrent chromosome 17q23. 1q23. 2 microduplications containing TBX4[J]. Am J Hum Genet, 2010, 87(1): 154-160. doi: 10.1016/j.ajhg.2010.06.010
|
[17] |
LU W, BACINO C A, RICHARDS B S, et al. Studies of TBX4 and chromosome 17q23. 1q23. 2: an uncommon cause of nonsyndromic clubfoot[J]. Am J Med Genet A, 2012, 158A(7): 1620-1627. doi: 10.1002/ajmg.a.35418
|
[18] |
PETERSON J F, GHALOUL-GONZALEZ L, MADAN-KHETARPAL S, et al. Familial microduplication of 17q23. 1-Q23. 2 involving TBX4 is associated with congenital clubfoot and reduced penetrance in females[J]. Am J Med Genet A, 2014, 164A(2): 364-369. doi: 10.1002/ajmg.a.36238
|
[19] |
Guo L W, Shao G L. Research advances in the role of the Hippo-YAP/TAZ signaling pathway in primary liver cancer[J]. Zhonghua Gan Zang Bing Za Zhi, 2017, 25(11): 878-880. http://europepmc.org/abstract/MED/29325286
|
[20] |
BOOPATHY G T K, HONG W J. Role of hippo pathway-YAP/TAZ signaling in angiogenesis[J]. Front Cell Dev Biol, 2019, 7: 49-55. doi: 10.3389/fcell.2019.00049
|
[21] |
SUN J X, YANG Z Y, XIE L M, et al. TAZ and myostatin involved in muscle atrophy of congenital neurogenic clubfoot[J]. World J Clin Cases, 2019, 7(16): 2238-2246. doi: 10.12998/wjcc.v7.i16.2238
|
[22] |
MOON D K, GURNETT C A, AFEROL H, et al. Soft-tissue abnormalities associated with treatment-resistant and treatment-responsive clubfoot: findings of MRI analysis[J]. J Bone Joint Surg Am, 2014, 96(15): 1249-1256. doi: 10.2106/JBJS.M.01257
|
[23] |
IPPOLITO E, DE MAIO F, MANCINI F, et al. Leg muscle atrophy in idiopathic congenital clubfoot: is it primitive or acquired?[J]. J Child Orthop, 2009, 3(3): 171-178. doi: 10.1007/s11832-009-0179-4
|
[24] |
IPPOLITO E, DRAGONI M, ANTONICOLI M, et al. An MRI volumetric study for leg muscles in congenital clubfoot[J]. J Child Orthop, 2012, 6(5): 433-438. doi: 10.1007/s11832-012-0444-9
|
[25] |
DUCE S L, D'ALESSANDRO M, DU Y M, et al. 3D MRI analysis of the lower legs of treated idiopathic congenital talipes equinovarus (clubfoot)[J]. PLoS One, 2013, 8(1): e54100. doi: 10.1371/journal.pone.0054100
|
[26] |
KADHUM M, LEE M H, CZERNUSZKA J, et al. An analysis of the mechanical properties of the ponseti method in clubfoot treatment[J]. Appl Bionics Biomech, 2019, 2019: 4308462. http://www.ncbi.nlm.nih.gov/pubmed/31019550
|
[27] |
MUNAJAT I, YOYSEFI M, NIK MAHDI N M. Deficient dorsalis pedis flow in severe idiopathic clubfeet: Does Ponseti casting affect the outcome[J]. Foot (Edinb), 2017, 32: 30-34. doi: 10.1016/j.foot.2017.05.003
|
[28] |
SHAHEEN S, BAHAR M E H, MOHAMMED A H A, et al. Arterial tree anomalies in patients with clubfoot: an investigation carried out at Soba University Hospital[J]. J Pediatr Orthop B, 2018, 27(1): 67-72. doi: 10.1097/BPB.0000000000000471
|
[29] |
MERRILL L J, GURNETT C A, SIEGEL M, et al. Vascular abnormalities correlate with decreased soft tissue volumes in idiopathic clubfoot[J]. Clin Orthop Relat Res, 2011, 469(5): 1442-1449. doi: 10.1007/s11999-010-1657-1
|
[30] |
STOLER J M, MCGUIRK C K, Lieberman E, et al. Malformations reported in chorionic villus sampling exposed children: a review and analytic synthesis of the literature[J]. Genet Med, 1999, 1(7): 315-322. doi: 10.1097/00125817-199911000-00001
|
[31] |
MIYAGI N, IISAKA H, YASUDA K, et al. Onset of ossification of the tarsal bones in congenital clubfoot[J]. J Pediatr Orthop, 1997, 17(1): 36-40. http://www.sciencedirect.com/science/article/pii/S0949265815338112
|
[32] |
GILBERT J A, ROACH H I, CLARKE N M. Histological abnormalities of the Calcaneum in congenital talipes equinovarus[J]. J Orthop Sci, 2001, 6(6): 519-526. doi: 10.1007/s007760100007
|
[33] |
ZHANG T G, LI X D, YU G Y, et al. All-trans-retinoic acid inhibits chondrogenesis of rat embryo hindlimb bud mesenchymal cells by downregulating p53 expression[J]. Mol Med Rep, 2015, 12(1): 210-218. doi: 10.3892/mmr.2015.3423
|
[34] |
LANG P J, AVOIAN T, SANGIORGIO S N, et al. Quantification of the ossification of the lateral cuneiform in the feet of young children with unilateral congenital talipes equinovarus[J]. Bone Joint J, 2017, 99-B(8): 1109-1114. doi: 10.1302/0301-620X.99B8.BJJ-2016-0999.R2
|
[35] |
FARRELL S A, SUMMERS A M, DALLAIRE L, et al. Club foot, an adverse out come of early am niocentesis: Disruption or deformation CEMAT. Canadian Early and Mid-Trimester Amniocentesis Trial[J]. Journal of Medical Genetics, 1999, 36(11): 843-846. http://jmg.bmj.com/content/36/11/843.full
|
[36] |
CEDERHOLM M, HAGLUND B, AXELSSON O. Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping[J]. BJOG, 2005, 112(4): 394-402. doi: 10.1111/j.1471-0528.2005.00413.x
|
1. |
杨震宇,於江泉. 宏基因组二代测序诊断免疫缺陷患者感染性疾病的研究进展. 实用临床医药杂志. 2024(09): 129-133 .
![]() | |
2. |
马海昀,张永栋,刘佳雯,赵璐,杨成霞,鄂芬芬,张容容,绽丽. 基于CiteSpace的国内外血液透析用水研究可视化分析. 现代医院. 2024(06): 970-976+980 .
![]() | |
3. |
杨雅名,史继新,王艳伟,张瑞雪,张文增. 基于中国知网1978—2024年国内流感监测研究热点与趋势的可视化分析. 中国初级卫生保健. 2024(11): 1-5 .
![]() |