ZHANG Xuanyu, SU Zhonghua, BU Ren'ge. Establishment of prognosis related model of localized clear cell renal cell carcinoma[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 107-110, 114. DOI: 10.7619/jcmp.20201810
Citation: ZHANG Xuanyu, SU Zhonghua, BU Ren'ge. Establishment of prognosis related model of localized clear cell renal cell carcinoma[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 107-110, 114. DOI: 10.7619/jcmp.20201810

Establishment of prognosis related model of localized clear cell renal cell carcinoma

More Information
  • Received Date: December 27, 2020
  • Available Online: April 20, 2021
  • Published Date: April 14, 2021
  •   Objective  To establish and evaluate postoperative prognosis related predictive model for patients with localized clear cell renal cell carcinoma (ccRCC).
      Methods  The clinical materials of 526 ccRCC patients with radical nephrectomy or partial nephrectomy were retrospectively analyzed. Univariate and multivariate Cox regression analysis were used to establish Nomograms. The value of the model was evaluated by calibration plots, decision curve analysis (DCA) and Harrell's consistency index (CI).
      Results  Univariate analysis showed that age, clinical symptoms, history of hypertension, hyperlipidemia, D-dimer, albumin, anemia, preoperative creatinine, pathological grading and tumor size were independent risk factors for disease-free survival (DFS) (P < 0.05). The final predictive model included age, symptoms, anemia, D-dimer and tumor size. The CI of Nomogram was 0.78 (95% CI, 0.71 to 0.85). The calibration plots at 3 and 5 years after operation showed that the model performed well, and DCA showed that the model had clinical benefits.
      Conclusion  The predictive model constructed in this study can predict the prognosis of patients with localized ccRCC, and it can provide reference for postoperative follow-up and personalized disease management of related patients.
  • [1]
    FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018[J]. Eur J Cancer, 2018, 103: 356-387. doi: 10.1016/j.ejca.2018.07.005
    [2]
    KEEGAN K A, SCHUPP C W, CHAMIE K, et al. Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage[J]. J Urol, 2012, 188(2): 391-397. doi: 10.1016/j.juro.2012.04.006
    [3]
    TSUI K H, SHVARTS O, SMITH R B, et al. Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria[J]. J Urol, 2000, 163(4): 1090-1095, 1295. doi: 10.1016/S0022-5347(05)67699-9
    [4]
    ZHAO H L, CAO Y T, WANG Y, et al. Dynamic prognostic model for kidney renal clear cell carcinoma (KIRC) patients by combining clinical and genetic information[J]. Sci Rep, 2018, 8(1): 17613. doi: 10.1038/s41598-018-35981-5
    [5]
    SORBELLINI M, KATTAN M W, SNYDER M E, et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma[J]. J Urol, 2005, 173(1): 48-51. doi: 10.1097/01.ju.0000148261.19532.2c
    [6]
    ZISMAN A, PANTUCK A J, DOREY F, et al. Improved prognostication of renal cell carcinoma using an integrated staging system[J]. J Clin Oncol, 2001, 19(6): 1649-1657. doi: 10.1200/JCO.2001.19.6.1649
    [7]
    FRANK I, BLUTE M L, CHEVILLE J C, et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score[J]. J Urol, 2002, 168(6): 2395-2400. doi: 10.1016/S0022-5347(05)64153-5
    [8]
    ZHANG X, BU R G, LIU Z Q, et al. Development and validation of a model for predicting intravesical recurrence in organ-confined upper urinary tract urothelial carcinoma patients after radical nephroureterectomy: a retrospective study in one center with long-term follow-up[J]. Pathol Oncol Res, 2020, 26(3): 1741-1748. doi: 10.1007/s12253-019-00748-4
    [9]
    VICKERS A J, CRONIN A M, ELKIN E B, et al. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers[J]. BMC Med Inform Decis Mak, 2008, 8: 53-58. doi: 10.1186/1472-6947-8-53
    [10]
    SOBIN L H, WITTEKIND C. TNM classification of malignant tumours[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2003: 23-25.
    [11]
    KARAKIEWICZ P I, BRIGANTI A, CHUN F K, et al. Multi-institutional validation of a new renal cancer-specific survival nomogram[J]. J Clin Oncol, 2007, 25(11): 1316-1322. doi: 10.1200/JCO.2006.06.1218
    [12]
    TSIMAFEYEU I V, DEMIDOV L V, MADZHUGA A V, et al. Hypercoagulability as a prognostic factor for survival in patients with metastatic renal cell carcinoma[J]. J Exp Clin Cancer Res, 2009, 28: 30-38. doi: 10.1186/1756-9966-28-30
    [13]
    ERDEM S, AMASYALI A S, AYTAC O, et al. Increased preoperative levels of plasma fibrinogen and D dimer in patients with renal cell carcinoma is associated with poor survival and adverse tumor characteristics[J]. Urol Oncol, 2014, 32(7): 1031-1040. doi: 10.1016/j.urolonc.2014.03.013
    [14]
    KIANG T K, TENG X W, SURENDRADOSS J, et al. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity[J]. Toxicol Appl Pharmacol, 2011, 252(3): 318-324. doi: 10.1016/j.taap.2011.03.004
    [15]
    LAURSEN I, BRIAND P, LYKKESFELDT A E. Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7[J]. Anticancer Res, 1990, 10(2A): 343-351. http://www.ncbi.nlm.nih.gov/pubmed/2346307
    [16]
    KAYSEN G A. Serum albumin concentration in dialysis patients: why does it remain resistant to therapy[J]. Kidney Int Suppl, 2003(87): S92-S98. http://www.ncbi.nlm.nih.gov/pubmed/14531780?dopt=Abstract
    [17]
    MORGAN T M, TANG D, STRATTON K L, et al. Preoperative nutritional status is an important predictor of survival in patients undergoing surgery for renal cell carcinoma[J]. Eur Urol, 2011, 59(6): 923-928. doi: 10.1016/j.eururo.2011.01.034
    [18]
    HE X B, GUO S J, CHEN D, et al. Preoperative albumin to globulin ratio (AGR) as prognostic factor in renal cell carcinoma[J]. J Cancer, 2017, 8(2): 258-265. doi: 10.7150/jca.16525
    [19]
    FOX P, HUDSON M, BROWN C, et al. Markers of systemic inflammation predict survival in patients with advanced renal cell cancer[J]. Br J Cancer, 2013, 109(1): 147-153. doi: 10.1038/bjc.2013.300
    [20]
    MCMILLAN D C. Systemic inflammation, nutritional status and survival in patients with cancer[J]. Curr Opin Clin Nutr Metab Care, 2009, 12(3): 223-226. doi: 10.1097/MCO.0b013e32832a7902
    [21]
    HU H, YAO X, XIE X, et al. Prognostic value of preoperative NLR, dNLR, PLR and CRP in surgical renal cell carcinoma patients[J]. World J Urol, 2017, 35(2): 261-270. doi: 10.1007/s00345-016-1864-9
    [22]
    YAYCIOGLU O, ESKICORAPCI S, KARABULUT E, et al. A preoperative prognostic model predicting recurrence-free survival for patients with kidney cancer[J]. Jpn J Clin Oncol, 2013, 43(1): 63-68. doi: 10.1093/jjco/hys192
  • Related Articles

    [1]ZHOU Rui, ZOU Minghao, ZHOU Wenxuan, LIU Fuchen, ZHANG Kaiting, WU Xiaoqin, ZHAO Man, QIAN Jin, JIA Ningyang, LIU Hui. Morphological characteristics of hepatocellular carcinoma tumor margin: a crucial factor in clinical treatment decision-making and prognostic assessment[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 127-130, 137. DOI: 10.7619/jcmp.20245496
    [2]NIU Weiqiao, ZHANG Cong, JIANG Hanlin, HUANG Lining, LU Yijie, XU Yaopeng, LIU Biren, JIANG Xinwei, WU Jianwu. A preliminary exploration on safety and learning curve of laparoscopic pancreatoduodenectomy in low-flow pancreatic center[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 13-18, 25. DOI: 10.7619/jcmp.20245603
    [3]ZHU Houling, HUANG Shan, MA Zetao, WU Yuewei. Influencing factors and construction of a prediction model for poor prognosis in patients with acute myocardial infarction complicated by heart failure[J]. Journal of Clinical Medicine in Practice, 2025, 29(5): 82-87, 94. DOI: 10.7619/jcmp.20244687
    [4]CHEN Xiaohui, JIAO Zishan, WANG Nana, SHA Kaihui. Decision tree C5.0 versus Logistic regression model in predicting postpartum diastasis recti abdominis[J]. Journal of Clinical Medicine in Practice, 2023, 27(16): 115-120, 126. DOI: 10.7619/jcmp.20230893
    [5]ZHANG Xuting, LUO Caifeng, WU Xianqun, SHANG Bin, WEI Lanzhi, LYU Fei. Visual analysis of shared decision researches in patients with breast cancer based on core set of Web of Science[J]. Journal of Clinical Medicine in Practice, 2023, 27(5): 37-42. DOI: 10.7619/jcmp.20230022
    [6]XIE Songgang, LIANG Chengtong, ZHOU Lijuan, WANG Mengting. Analysis in prognostic risk factors of patients with lung metastasis of breast cancer and establishment of nomogram[J]. Journal of Clinical Medicine in Practice, 2022, 26(18): 48-56. DOI: 10.7619/jcmp.20220717
    [7]ZHOU Ruhua, GU Zejuan, XU Jingjing, YU Jian. Research progress of decision aids in diabetes management[J]. Journal of Clinical Medicine in Practice, 2022, 26(12): 144-148. DOI: 10.7619/jcmp.20214247
    [8]DONG Yanping, WANG Jiemin, WANG Yujin, REN Yali, DONG Yucheng, YONG Yanjun, SU Xuandi, WANG Jixiang, SU Nan, WANG Fuli, XIA Duosheng. Construction and evaluation of Nomogram prediction model for postoperative recurrence of pterygium[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 52-56. DOI: 10.7619/jcmp.20214610
    [9]LI Fengjiao, ZHAO Yongliang, YANG Fengbo, XUE Xinzhong. Clinical efficacy analysis of different audiometric curves in sudden sensorineural hearing loss patients[J]. Journal of Clinical Medicine in Practice, 2020, 24(1): 14-18. DOI: 10.7619/jcmp.202001004
    [10]YANG Jingrong, XU Chi, YE Shixin, LIAN Duohuang, ZENG Zhiyong. Analysis in learning curve of Mckeown-type minimally invasive esophagectomy for patients with esophageal carcinoma[J]. Journal of Clinical Medicine in Practice, 2015, (9): 65-68. DOI: 10.7619/jcmp.201509019
  • Cited by

    Periodical cited type(11)

    1. 连利媛,张玉. 新生儿呼吸窘迫综合征患儿预后情况及不良预后影响因素分析. 航空航天医学杂志. 2024(09): 1124-1126 .
    2. 邹晴,方玉玲,彭晓瑞,谢双霞,胡艳松. 新生儿呼吸窘迫综合征患儿预后不良的影响因素. 中国民康医学. 2024(21): 8-11 .
    3. 季俊玲,木菁菁,温苗苗,赵碧茹. 新生儿呼吸窘迫综合征患儿肺出血发生情况及预后的影响因素分析. 中国妇幼保健. 2023(18): 3518-3522 .
    4. 杜睿,甄丽. 肺部超声评估在新生儿呼吸窘迫综合征中的临床应用价值. 国际呼吸杂志. 2023(09): 1077-1082 .
    5. 徐刘毅. 早期应用肺表面活性物质预防新生儿呼吸窘迫综合征的效果分析. 中国妇幼保健. 2023(24): 4858-4861 .
    6. 李卓娅,宋红,宋焕清,周川,李晶晶. 氨基末端脑钠肽前体水平在早产儿支气管肺发育不良中的临床价值. 实用临床医药杂志. 2022(10): 83-87+96 . 本站查看
    7. 李紫薇,顾美群,许小志,唐莲芳,许小艳,杨景晖,毕凯,米弘瑛. 某三甲医院101例极早产儿临床资料分析. 昆明医科大学学报. 2022(06): 85-91 .
    8. 刘立静,马洪欣,杜睿,邸晓玲,顾华. 肺部超声新评分法在新生儿呼吸窘迫综合征病情评价及治疗中的应用效果. 实用临床医药杂志. 2022(21): 111-114 . 本站查看
    9. 罗恒,梅玥婧,刘夕珑,张立英,卢丹. 保留胎膜囊剖宫产术在早产双胎妊娠中的应用评价. 实用临床医药杂志. 2022(23): 60-64 . 本站查看
    10. 李婕. 不同剂量牛肺表面活性剂治疗新生儿呼吸窘迫综合征30例疗效观察. 药品评价. 2021(15): 939-941 .
    11. 李梦娇,李晶,马金红,张迪. 个性化的互动延续性护理干预对低出生体重早产儿体格生长的影响研究. 中国优生与遗传杂志. 2021(12): 1782-1785 .

    Other cited types(2)

Catalog

    Article views (406) PDF downloads (20) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return