Citation: | JIANG Weihua, YI Lina, ZHANG Chenguang, Xuelaiti·PAIZULA, XU Wenting, OU Jianghua. Expression of mesenchymal-epithelial transition factor and fatty acid synthase in triple-negative breast cancer and their impacs on prognosis[J]. Journal of Clinical Medicine in Practice, 2021, 25(8): 16-20. DOI: 10.7619/jcmp.20210355 |
[1] |
PRASANNA T, WU F, KHANNA K K, et al. Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy[J]. Cancer Sci, 2018, 109(11): 3383-3392. doi: 10.1111/cas.13799
|
[2] |
YI Y W, YOU K, BAE E J, et al. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6[J]. Int J Oncol, 2015, 47(1): 122-132. doi: 10.3892/ijo.2015.2982
|
[3] |
GAULE P, MUKHERJEE N, CORKERY B, et al. Dasatinib Treatment Increases Sensitivity to c-Met Inhibition in Triple-Negative Breast Cancer Cells[J]. Cancers (Basel), 2019, 11(4): 548-548. doi: 10.3390/cancers11040548
|
[4] |
REN X, YUAN L, SHEN S, et al. C-Met and ERβ expression differences in basal-like and non-basal-like triple-negative breast cancer[J]. Tumour Biol, 2016, 37(8): 11385-11395. doi: 10.1007/s13277-016-5010-5
|
[5] |
AYOUB N M, AL-SHAMI K M, ALQUDAH M A, et al. Crizotinib, a MET inhibitor, inhibits growth, migration, and invasion of breast cancer cells in vitro and synergizes with chemotherapeutic agents[J]. Onco Targets Ther, 2017, 10: 4869-4883. doi: 10.2147/OTT.S148604
|
[6] |
SIMICZYJEW, ALEKSANDRA, DRATKIEWICZ, et al. Combination of EGFR Inhibitor Lapatinib and MET Inhibitor Foretinib Inhibits Migration of Triple Negative Breast Cancer Cell Lines[J]. Cancers, 2018, 10(9): 335-335. doi: 10.3390/cancers10090335
|
[7] |
BUENO M J, QUINTELA-FANDINO M. Emerging role of Fatty acid synthase in tumor initiation: implications for cancer prevention[J]. Mol Cell Oncol, 2020, 7(2): 1709389. doi: 10.1080/23723556.2019.1709389
|
[8] |
MENENDEZ J A, LUPU R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells[J]. Oncogenesis, 2017, 6(2): e299. doi: 10.1038/oncsis.2017.4
|
[9] |
GIRÓ-PERAFITA A, PALOMERAS S, LUM D H, et al. Preclinical evaluation of fatty acid synthase and EGFR inhibition in triple-negative breast cancer[J]. Clin Cancer Res, 2016, 22(18): 4687-4697. doi: 10.1158/1078-0432.CCR-15-3133
|
[10] |
ERICA LEONETTI, LUISA GESUALDI, KATIA CORANO SCHERI, et al. Arnold LEnders JThomas SM. c-Src Recruitment Is Involved in c-Met-Mediated Malignant Behaviour of NT2D1 Non-Seminoma Cells[J]. Int J Mol Sci, 2019, 20(2): 320. doi: 10.3390/ijms20020320
|
[11] |
CHUN H W, HONG R. Significance of PD-L1 clones and C-MET expression in hepatocellular carcinoma[J]. Oncol Lett, 2019, 17(6): 5487-5498. http://www.ingentaconnect.com/content/sp/ol/2019/00000017/00000006/art00090
|
[12] |
NAN L, QIN T, XIAO Y, et al. Pancreatic stellate cells facilitate perineural invasion of pancreatic cancer via HGF/c-met pathway[J]. Cell Transplant, 2019, 28(9/10): 1289-1298. http://www.researchgate.net/publication/333612428_Pancreatic_Stellate_Cells_Facilitate_Perineural_Invasion_of_Pancreatic_Cancer_via_HGFc-Met_Pathway
|
[13] |
LEE S J, LEE J, PARK S H, et al. C-MET overexpression in colorectal cancer: a poor prognostic factor for survival[J]. Clin Colorectal Cancer, 2018, 17(3): 165-169. doi: 10.1016/j.clcc.2018.02.013
|
[14] |
ZAGOURI F, BAGO-HORVATH Z, RÖSSLER F, et al. High MET expression is an adverse prognostic factor in patients with triple-negative breast cancer[J]. Br J Cancer, 2013, 108(5): 1100-1105. doi: 10.1038/bjc.2013.31
|
[15] |
BREEN L, GAULE P B, CANONICI A, et al. Targeting c-Met in triple negative breast cancer: preclinical studies using the c-Met inhibitor, Cpd A[J]. Investig New Drugs, 2020, 38(5): 1365-1372. doi: 10.1007/s10637-020-00937-y
|
[16] |
ZHAO X, QU J, HUI Y, et al. Clinicopathological and prognostic significance of c-Met overexpress-ion in breast cancer[J]. Oncotarget, 2017, 8(34): 56758-56767. doi: 10.18632/oncotarget.18142
|
[17] |
KIN Y J, CHOI J S, SEO J, et al. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer[J]. Int J Cancer, 2014, 134(10): 2424-2436. doi: 10.1002/ijc.28566
|
[18] |
Yi Y W, You K, Bae E J, et al. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6[J]. Int J Oncol, 2015, 47(1): 122-132. doi: 10.3892/ijo.2015.2982
|
[19] |
SHI B, JIANG Y, CHEN Y, ZHAO Z, et al. Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks[J]. Animals (Basel). 2019, 9(9): 613-613. http://www.researchgate.net/publication/335435976_Variation_in_the_Fatty_Acid_Synthase_Gene_FASN_and_Its_Association_with_Milk_Traits_in_Gannan_Yaks
|
[20] |
FLORIS A, MAZAREI M, YANG X, et al. SUMOylation Protects FASN Against Proteasomal Degradation in Breast Cancer Cells Treated with Grape Leaf Extract[J]. Biomolecules, 2020, 10(4): 529. doi: 10.3390/biom10040529
|
[21] |
GIRÓ-PERAFITA A, SARRATS A, PÉREZ-BUENO F, et al. Fatty acid synthase expression and its association with clinico-histopathological features in triple-negative breast cancer[J]. Oncotarget, 2017, 8(43): 74391-74405. doi: 10.18632/oncotarget.20152
|
[22] |
FONTANELLA C, LEDERER B, GADE S, et al. Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials[J]. Breast Cancer Res Treat, 2015, 150(1): 127-139. doi: 10.1007/s10549-015-3287-5
|
[23] |
GONDO N, SAWAKI M, HATTORI M, et al. Impact of BMI for clinical outcomes in Japanese breast cancer patients[J]. Jpn J Clin Oncol, 2020, 50(3): 230-240. doi: 10.1093/jjco/hyz175
|
[24] |
BAUERSCHLAG D O, MAASS N, LEONHARDT P, et al. Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer[J]. J Transl Med, 2015, 13: 146-146. doi: 10.1186/s12967-015-0511-3
|
1. |
木国法,李旭,龚应玲. 白细胞介素-4、瘦素、趋化素与肥胖型哮喘患儿病情程度的关系及预测哮喘控制的价值. 实用临床医药杂志. 2025(03): 108-113 .
![]() | |
2. |
杨洁. 儿保门诊小儿骨密度检测结果分析及干预. 婚育与健康. 2024(06): 97-99 .
![]() | |
3. |
高诗宇,吴力群,马佳,李盼盼,路晨,聂力. 基于网络药理学和分子对接技术探讨缓哮六安煎治疗儿童支气管哮喘的作用机制. 现代中西医结合杂志. 2022(11): 1513-1520 .
![]() | |
4. |
陈春娟,蔡剑英,刘凤林. 吸入性糖皮质激素长期低剂量应用对轻中度支气管哮喘儿童生长发育的影响分析. 贵州医药. 2022(10): 1574-1575 .
![]() | |
5. |
安家,李霞,李虹霖,杜淑玲. 小儿咳嗽变异性哮喘患儿骨代谢指标水平及其临床意义. 系统医学. 2022(21): 1-5 .
![]() |