Citation: | SHENG Fumei, LIAN Xu, HAN Chongxu. Bioinformatics analysis of differentially expressed genes in thyroid cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(10): 1-5, 10. DOI: 10.7619/jcmp.20211192 |
[1] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. doi: 10.3322/caac.21551
|
[2] |
董芬, 张彪, 单广良. 中国甲状腺癌的流行现状和影响因素[J]. 中国癌症杂志, 2016, 26(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ201601009.htm
|
[3] |
HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133. doi: 10.1089/thy.2015.0020
|
[4] |
ZANE M, PARELLO C, PENNELLI G, et al. Estrogen and thyroid cancer is a stem affair: a preliminary study[J]. Biomedecine Pharmacother, 2017, 85: 399-411. doi: 10.1016/j.biopha.2016.11.043
|
[5] |
RUBIO G A, CATANUTO P, GLASSBERG M K, et al. Estrogen receptor subtype expression and regulation is altered in papillary thyroid cancer after menopause[J]. Surgery, 2018, 163(1): 143-149. doi: 10.1016/j.surg.2017.04.031
|
[6] |
SCHULTEN H J, AL-MANSOURI Z, BAGHALLAB I, et al. Comparison of microarray expression profiles between follicular variant of papillary thyroid carcinomas and follicular adenomas of the thyroid[J]. BMC Genomics, 2015, 16(Suppl 1): S7. http://www.biomedcentral.com/1471-2164/16/S7/
|
[7] |
LIAO B C, LIU S, LIU J F, et al. Long noncoding RNA CTC inhibits proliferation and invasion by targeting miR-146 to regulate KIT in papillary thyroid carcinoma[J]. Sci Rep, 2020, 10(1): 4616. doi: 10.1038/s41598-020-61577-z
|
[8] |
TOMEI S, MAZZANTI C, MARCHETTI I, et al. C-KIT receptor expression is strictly associated with the biological behaviour of thyroid nodules[J]. J Transl Med, 2012, 10: 7. doi: 10.1186/1479-5876-10-7
|
[9] |
SHEN X, KAN S F, LIU Z, et al. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis[J]. Exp Cell Res, 2017, 352(1): 130-138. doi: 10.1016/j.yexcr.2017.02.003
|
[10] |
REN W W, LI D D, CHEN X, et al. MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy[J]. Cell Death Dis, 2018, 9(5): 547. doi: 10.1038/s41419-018-0592-z
|
[11] |
XIE H, HU J, PAN H, et al. Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells[J]. BMB Rep, 2014, 47(2): 104-109. doi: 10.5483/BMBRep.2014.47.2.090
|
[12] |
LIN B Y, WEN J L, ZHENG C, et al. Eva-1 homolog A promotes papillary thyroid cancer progression and epithelial-mesenchymal transition via the Hippo signalling pathway[J]. J Cell Mol Med, 2020, 24(22): 13070-13080. doi: 10.1111/jcmm.15909
|
[13] |
ZHANG L, HUANG Y, LING J, et al. Is integrin subunit alpha 2 expression a prognostic factor for liver carcinoma A validation experiment based on bioinformatics analysis[J]. Pathol Oncol Res, 2019, 25(4): 1545-1552. doi: 10.1007/s12253-018-0551-0
|
[14] |
CHUANG Y C, WU H Y, LIN Y L, et al. Blockade of ITGA2 induces apoptosis and inhibits cell migration in gastric cancer[J]. Biol Proced Online, 2018, 20: 10. doi: 10.1186/s12575-018-0073-x
|
[15] |
GUZMÁN-RAMÍREZ N, VÖLLER M, WETTERWALD A, et al. In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue[J]. Prostate, 2009, 69(15): 1683-1693. doi: 10.1002/pros.21018
|
[16] |
HAIDARI M, ZHANG W, CAIVANO A, et al. Integrin α2β1 mediates tyrosine phosphorylation of vascular endothelial cadherin induced by invasive breast cancer cells[J]. J Biol Chem, 2012, 287(39): 32981-32992. doi: 10.1074/jbc.M112.395905
|
[17] |
CHERNAYA G, MIKHNO N, KHABALOVA T, et al. The expression profile of integrin receptors and osteopontin in thyroid malignancies varies depending on the tumor progression rate and presence of BRAF V600E mutation[J]. Surg Oncol, 2018, 27(4): 702-708. doi: 10.1016/j.suronc.2018.09.007
|
[18] |
SASCA D, SZYBINSKI J, SCHVLER A, et al. NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML[J]. Blood, 2019, 133(21): 2305-2319. doi: 10.1182/blood-2018-12-889725
|
[19] |
SONG T N, ZHOU H, WEI X P, et al. Downregulation of microRNA-324-3p inhibits lung cancer by blocking the NCAM1-MAPK axis through ALX4[J]. Cancer Gene Ther, 2020: 1-16. http://www.nature.com/articles/s41417-020-00231-2
|
[20] |
GOLU I, VLAD M M, DEMA A, et al. The absence of CD56 expression can differentiate papillary thyroid carcinoma from other thyroid lesions[J]. Indian J Pathol Microbiol, 2017, 60(2): 161-166. doi: 10.4103/0377-4929.208378
|
[21] |
LIOU G Y. CD133 as a regulator of cancer metastasis through the cancer stem cells[J]. Int J Biochem Cell Biol, 2019, 106: 1-7. doi: 10.1016/j.biocel.2018.10.013
|
[22] |
GLUMAC P M, LEBEAU A M. The role of CD133 in cancer: a concise review[J]. Clin Transl Med, 2018, 7(1): 18.
|
[23] |
WANG Z L, LIU W, WANG C, et al. Acetylcholine promotes the self-renewal and immune escape of CD133+ thyroid cancer cells through activation of CD133-Akt pathway[J]. Cancer Lett, 2020, 471: 116-124. doi: 10.1016/j.canlet.2019.12.009
|
[24] |
CHAN H S, CHANG S J, WANG T Y, et al. Serine protease PRSS23 is upregulated by estrogen receptor α and associated with proliferation of breast cancer cells[J]. PLoS One, 2012, 7(1): e30397. doi: 10.1371/journal.pone.0030397
|
[25] |
HAN B, YANG Y, CHEN J, et al. PRSS23 knockdown inhibits gastric tumorigenesis through EIF2 signaling[J]. Pharmacol Res, 2019, 142: 50-57. doi: 10.1016/j.phrs.2019.02.008
|
[26] |
MARTINI M, DE SANTIS M C, BRACCINI L, et al. PI3K/AKT signaling pathway and cancer: an updated review[J]. Ann Med, 2014, 46(6): 372-383. doi: 10.3109/07853890.2014.912836
|
[27] |
XIA P, XU X Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application[J]. Am J Cancer Res, 2015, 5(5): 1602-1609. http://www.ncbi.nlm.nih.gov/pubmed/26175931
|