Citation: | WANG Yalin, YI Chuanhua, ZHU Muyun. Research progress on pathogenesis and individualized treatment in patients with eosinophilic chronic obstructive pulmonary disease[J]. Journal of Clinical Medicine in Practice, 2021, 25(18): 128-132. DOI: 10.7619/jcmp.20211345 |
[1] |
陈亚红. 2020年GOLD慢性阻塞性肺疾病诊断、治疗及预防全球策略解读[J]. 中国医学前沿杂志: 电子版, 2019, 11(12): 32-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQY201912010.htm
|
[2] |
TWOREK D, ANTCZAK A. Eosinophilic COPD—a distinct phenotype of the disease[J]. Adv Respir Med, 2017, 85(5): 271-276. doi: 10.5603/ARM.a2017.0045
|
[3] |
NEGEWO N A, MCDONALD V M, BAINES K J, et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD[J]. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1495-1504. doi: 10.2147/COPD.S100338
|
[4] |
CAO Y, GONG W, ZHANG H, et al. A Comparison of Serum and Sputum Inflammatory Mediator Profiles in Patients with Asthma and COPD[J]. Journal of International Medical Research, 2012, 40(6): 2231-2242. doi: 10.1177/030006051204000621
|
[5] |
SINGH D, KOLSUM U, BRIGHTLING C E, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics[J]. Eur Respir J, 2014, 44(6): 1697-1700. doi: 10.1183/09031936.00162414
|
[6] |
LANDIS S H, SURUKI R, HILTON E, et al. Stability of blood eosinophil count in patients with COPD in the UK clinical practice research datalink[J]. COPD, 2017, 14(4): 382-388. doi: 10.1080/15412555.2017.1313827
|
[7] |
GEORGE L, BRIGHTLING C E. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease[J]. Ther Adv Chronic Dis, 2016, 7(1): 34-51. doi: 10.1177/2040622315609251
|
[8] |
BAFADHEL M, MCCORMICK M, SAHA S, et al. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease[J]. Respiration, 2012, 83(1): 36-44. doi: 10.1159/000330667
|
[9] |
SAETTA M, DI STEFANO A, MAESTRELLI P, et al. Airway eosinophilia in chronic bronchitis during exacerbations[J]. Am J Respir Crit Care Med, 1994, 150(6 Pt 1): 1646-1652.
|
[10] |
TASHKIN D P, WECHSLER M E. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 335-349. doi: 10.2147/COPD.S152291
|
[11] |
BALZANO M, DE GRANDIS M, VU MANH T P, et al. Nidogen-1 contributes to the interaction network involved in pro-B cell retention in the peri-sinusoidal hematopoietic stem cell niche[J]. Cell Rep, 2019, 26(12): 3257-3271,e8. doi: 10.1016/j.celrep.2019.02.065
|
[12] |
KOLSUM U, RAVI A, HITCHEN P, et al. Clinical characteristics of eosinophilic COPD versus COPD patients with a history of asthma[J]. Respir Res, 2017, 18(1): 73. doi: 10.1186/s12931-017-0559-0
|
[13] |
PASCOE S, BARNES N, BRUSSELLE G, et al. Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease: analysis of the IMPACT trial[J]. Lancet Respir Med, 2019, 7(9): 745-756. doi: 10.1016/S2213-2600(19)30190-0
|
[14] |
KERKHOF M, VOORHAM J, DORINSKY P, et al. Association between COPD exacerbations and lung function decline during maintenance therapy[J]. Thorax, 2020, 75(9): 744-753. doi: 10.1136/thoraxjnl-2019-214457
|
[15] |
WHITTAKER H R, MVLLEROVA H, JARVIS D, et al. Inhaled corticosteroids, blood eosinophils, and FEV1 decline in patients with COPD in a large UK primary health care setting[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 1063-1073. doi: 10.2147/COPD.S200919
|
[16] |
MATHIOUDAKIS A G, BIKOV A, FODEN P, et al. Change in blood eosinophils following treatment with inhaled corticosteroids may predict long-term clinical response in COPD[J]. Eur Respir J, 2020, 55(5): 1902119. doi: 10.1183/13993003.02119-2019
|
[17] |
BAFADHEL M, DAVIES L, CALVERLEY P M A, et al. Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis[J]. Eur Respir J, 2014, 44(3): 789-791. doi: 10.1183/09031936.00062614
|
[18] |
BRIGHTLING C, GREENING N. Airway inflammation in COPD: progress to precision medicine[J]. Eur Respir J, 2019, 54(2): 1900651. doi: 10.1183/13993003.00651-2019
|
[19] |
MKOROMBINDO T, DRANSFIELD M T. Mepolizumab in the treatment of eosinophilic chronic obstructive pulmonary disease[J]. Int J Chronic Obstr Pulm Dis, 2019, 14: 1779-1787. doi: 10.2147/COPD.S162781
|
[20] |
PAVORD I D, CHANEZ P, CRINER G J, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease[J]. N Engl J Med, 2017, 377(17): 1613-1629. doi: 10.1056/NEJMoa1708208
|
[21] |
FERNANDEZ ROMERO G A, BEROS J, CRINER G. Mepolizumab for the prevention of chronic obstructive pulmonary disease exacerbations[J]. Expert Rev Respir Med, 2019, 13(2): 125-132. doi: 10.1080/17476348.2019.1561287
|
[22] |
HASSANI M, KOENDERMAN L. Immunological and hematological effects of IL-5(Rα)-targeted therapy: an overview[J]. Allergy, 2018, 73(10): 1979-1988. doi: 10.1111/all.13451
|
[23] |
NIXON J, NEWBOLD P, MUSTELIN T, et al. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation[J]. Pharmacol Ther, 2017, 169: 57-77. doi: 10.1016/j.pharmthera.2016.10.016
|
[24] |
BRIGHTLING C E, BLEECKER E R, PANETTIERI R J, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study[J]. Lancet Respir Med, 2014, 2(11): 891-901. doi: 10.1016/S2213-2600(14)70187-0
|
[25] |
CRINER G J, CELLI B R, SINGH D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies[J]. Lancet Respir Med, 2020, 8(2): 158-170. doi: 10.1016/S2213-2600(19)30338-8
|
[26] |
FAJT M L, WENZEL S E. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care[J]. J Allergy Clin Immunol, 2015, 135(2): 299-311. doi: 10.1016/j.jaci.2014.12.1871
|
[27] |
KIM S W, RHEE C K, KIM K U, et al. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2017, 12: 395-402. doi: 10.2147/COPD.S120445
|
[28] |
DOYLE A D, MUKHERJEE M, LESUER W E, et al. Eosinophil-derived IL-13 promotes emphysema[J]. Eur Respir J, 2019, 53(5): 1801291. doi: 10.1183/13993003.01291-2018
|
[29] |
EICKMEIER O, HUEBNER M, HERRMANN E, et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function[J]. Cytokine, 2010, 50(2): 152-157. doi: 10.1016/j.cyto.2010.02.004
|
[30] |
PANETTIERI R A Jr, SJÖBRING U, PÉTERFFY A, et al. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials[J]. Lancet Respir Med, 2018, 6(7): 511-525. doi: 10.1016/S2213-2600(18)30184-X
|
[31] |
KAUR D, GOMEZ E, DOE C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk[J]. Allergy, 2015, 70(5): 556-567. doi: 10.1111/all.12593
|
[32] |
SHANG J, ZHAO J L, WU X J, et al. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation[J]. Biochimie et Biol Cell, 2015, 93(4): 359-366. doi: 10.1139/bcb-2014-0163
|
[33] |
JACKSON D J, MAKRINIOTI H, RANA B M, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo[J]. Am J Respir Crit Care Med, 2014, 190(12): 1373-1382. doi: 10.1164/rccm.201406-1039OC
|
[34] |
UCHIMIZU H, MATSUWAKI Y, KATO M, et al. Eosinophil-derived neurotoxin, elastase, and cytokine profile in effusion from eosinophilic otitis media[J]. Allergol Int, 2015, 64(Suppl): S18-S23.
|
[35] |
RABE K F, WATZ H, BARALDO S, et al. Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease (ROBERT): a 16-week, randomised, placebo-controlled trial[J]. Lancet Respir Med, 2018, 6(11): 827-836. doi: 10.1016/S2213-2600(18)30331-X
|
[36] |
MARTINEZ F J, RABE K F, CALVERLEY P M A, et al. Determinants of response to roflumilast in severe chronic obstructive pulmonary disease. pooled analysis of two randomized trials[J]. Am J Respir Crit Care Med, 2018, 198(10): 1268-1278. doi: 10.1164/rccm.201712-2493OC
|
[37] |
王红梅, 刘耘充, 郑丹蕾, 等. 血嗜酸性粒细胞作为生物标志物在慢性阻塞性肺疾病中的研究进展[J]. 中华全科医学, 2020, 18(5): 815-820. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202005032.htm
|
[38] |
JACKSON D J, KORN S, MATHUR S K, et al. Safety of Eosinophil-Depleting Therapy for Severe, Eosinophilic Asthma: Focus on Benralizumab[J]. Drug Safety, 2020, 43.
|
1. |
牛绍迁,杨魏东,冯灵,张晓瑶,周琼蓉. 老年卒中后睡眠障碍的影响因素及药物与非药物治疗研究进展. 保健医学研究与实践. 2024(03): 134-138 .
![]() | |
2. |
史哲宇,黄慧丽,朱少炳,朱路文. 近5年血府逐瘀汤在神经系统疾病中的应用及作用机制研究进展. 中医药学报. 2024(11): 109-114 .
![]() | |
3. |
张雯,江丽杰,赵海河. 《医林改错》中活血化瘀类方剂治疗中风的研究进展. 中国中医基础医学杂志. 2023(06): 1036-1039 .
![]() | |
4. |
高娟,张则甫. 血府逐瘀汤联合康复训练对脑卒中后偏瘫足下垂患者下肢肌张力恢复及体感诱发电位的影响. 中国民族医药杂志. 2023(11): 8-10 .
![]() | |
5. |
孙晓. 血府逐瘀胶囊辅治脑卒中后抑郁临床观察. 实用中医药杂志. 2023(12): 2418-2420 .
![]() | |
6. |
乔煦,吴广,王钰. 养心方对缺血性脑卒中后睡眠障碍患者睡眠质量及血清5-HT、BDNF水平的影响. 中医药信息. 2022(02): 60-63 .
![]() | |
7. |
路琦,张永全. 中西医治疗脑卒中后失眠的研究进展. 大众科技. 2022(02): 106-109+113 .
![]() | |
8. |
贾军. 清肺化痰逐瘀汤治疗冠心病临床观察. 光明中医. 2022(08): 1423-1425 .
![]() | |
9. |
沈晓桦,卢根娣,蒋国静,胡丽,谈晓红. 引阳入阴推拿对剖宫产后心脾两虚证产妇睡眠障碍及负性情绪的影响. 实用临床医药杂志. 2022(09): 54-58 .
![]() | |
10. |
陈素银. 血府逐瘀汤对缺血性脑卒中患者血清细胞因子水平和脑血流的影响. 光明中医. 2022(13): 2357-2359 .
![]() | |
11. |
徐梦圆,孙平,杨言府. 血府逐瘀汤联合小剂量奥氮平治疗脑卒中后睡眠障碍30例临床观察. 中国民族民间医药. 2022(23): 113-115+118 .
![]() |