Citation: | GUO Tingting, LU Chaorong, GAO Jie, KAI Longxin, SUN Xiaoli, YANG Liying, JIAO Hongmei, KONG Guimei, LI Guocai. Research progress on animal-derived antimicrobial peptides for treatment of Acinetobacter baumannii infection[J]. Journal of Clinical Medicine in Practice, 2021, 25(19): 123-127, 132. DOI: 10.7619/jcmp.20212032 |
[1] |
VILA J, PACHÓN J. Therapeutic options for Acinetobacter baumannii infections[J]. Expert Opin Pharmacother, 2008, 9(4): 587-599. doi: 10.1517/14656566.9.4.587
|
[2] |
BENDINELLI M, FRIEDMAN H, BERGOGNE-BÉRÉZIN E. Acinetobacter biology and pathogenesis[M]. Springer-Verlag New YorkInc., 1988: 1-113.
|
[3] |
JASKIEWICZ M, NEUBAUER D, KAZOR K, et al. Antimicrobial activity of selected antimicrobial peptides against planktonic culture and biofilm of Acinetobacter baumannii[J]. Probiotics Antimicrob Proteins, 2019, 11(1): 317-324. doi: 10.1007/s12602-018-9444-5
|
[4] |
DAS NEVES R C, MORTARI M R, SCHWARTZ E F, et al. Antimicrobial and antibiofilm effects of peptides from venom of social wasp and scorpion on multidrug-resistant Acinetobacter baumannii[J]. Toxins (Basel), 2019, 11(4): E216. doi: 10.3390/toxins11040216
|
[5] |
WUERTH K, HANCOCK R E. New insights into cathelicidin modulation of adaptive immunity[J]. Eur J Immunol, 2011, 41(10): 2817-2819. doi: 10.1002/eji.201142055
|
[6] |
CHOWANSKI S, ADAMSKI Z, LUBAWY J, et al. Insect peptides-perspectives in human diseases treatment[J]. Curr Med Chem, 2017, 24(29): 3116-3152.
|
[7] |
杨浩, 罗鹏程, 付靖瑜, 等. 抗菌肽LL-37序列分析与结构研究[J]. 中华医院感染学杂志, 2016, 26(22): 5076-5079. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201622012.htm
|
[8] |
MARTYNOWYCZ M W, RICE A, ANDREEV K, et al. Salmonella membrane structural remodeling increases resistance to antimicrobial peptide LL-37[J]. ACS Infect Dis, 2019, 5(7): 1214-1222. doi: 10.1021/acsinfecdis.9b00066
|
[9] |
LIN M F, LIN Y Y, LAN C Y. Characterization of biofilm production in different strains of Acinetobacter baumannii and the effects of chemical compounds on biofilm formation[J]. PeerJ, 2020, 8: e9020. doi: 10.7717/peerj.9020
|
[10] |
FENG X R, SAMBANTHAMOORTHY K, PALYS T, et al. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii[J]. Peptides, 2013, 49: 131-137. doi: 10.1016/j.peptides.2013.09.007
|
[11] |
KWON H I, KIM S, OH M H, et al. Distinct role of outer membrane protein A in the intrinsic resistance of Acinetobacter baumannii and Acinetobacter nosocomialis[J]. Infect Genet Evol, 2019, 67: 33-37. doi: 10.1016/j.meegid.2018.10.022
|
[12] |
LIN M F, TSAI P W, CHEN J Y, et al. OmpA binding mediates the effect of antimicrobial peptide LL-37 on Acinetobacter baumannii[J]. PLoS One, 2015, 10(10): e0141107. doi: 10.1371/journal.pone.0141107
|
[13] |
WANG C, SHEN M, ZHANG N, et al. Reduction impairs the antibacterial activity but benefits the LPS neutralization ability of human enteric defensin 5[J]. Sci Rep, 2016, 6: 22875. doi: 10.1038/srep22875
|
[14] |
GOUNDER A P, MYERS N D, TREUTING P M, et al. Defensins potentiate a neutralizing antibody response to enteric viral infection[J]. PLoS Pathog, 2016, 12(3): e1005474. doi: 10.1371/journal.ppat.1005474
|
[15] |
PAZGIER M, LI X Q, LU W Y, et al. Human defensins: synthesis and structural properties[J]. Curr Pharm Des, 2007, 13(30): 3096-3118. doi: 10.2174/138161207782110381
|
[16] |
WANG C, ZHAO G M, WANG S, et al. A simplified derivative of human defensin 5 with potent and efficient activity against multidrug-resistant Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2018, 62(2): e01504-e01517. http://aac.asm.org/content/62/2/e01504-17.full-text.pdf
|
[17] |
TAKEDA K, AKIRA S. Toll-like receptors in innate immunity[J]. Int Immunol, 2005, 17(1): 1-14. http://203.18.51.96:8080/jspui/bitstream/123456789/65/1/14-HK.pdf
|
[18] |
FENG Z, JIA X, ADAMS M D, et al. Epithelial innate immune response to Acinetobacter baumannii challenge[J]. Infect Immun, 2014, 82(11): 4458-4465. doi: 10.1128/IAI.01897-14
|
[19] |
KIM M K, KANG N, KO S J, et al. Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant Acinetobacter baumannii[J]. Int J Mol Sci, 2018, 19(10): E3041. doi: 10.3390/ijms19103041
|
[20] |
GOTTLER L M, RAMAMOORTHY A. Structure, membrane orientation, mechanism, and function of pexiganan: a highly potent antimicrobial peptide designed from Magainin[J]. Biochim Biophys Acta, 2009, 1788(8): 1680-1686. doi: 10.1016/j.bbamem.2008.10.009
|
[21] |
FUCHS P C, BARRY A L, BROWN S D. In vitro antimicrobial activity of MSI-78, a Magainin analog[J]. Antimicrob Agents Chemother, 1998, 42(5): 1213-1216. doi: 10.1128/AAC.42.5.1213
|
[22] |
NAVON-VENEZIA S, FEDER R, GAIDUKOV L, et al. Antibacterial properties of dermaseptin S4 derivatives with in vivo activity[J]. Antimicrob Agents Chemother, 2002, 46(3): 689-694. doi: 10.1128/AAC.46.3.689-694.2002
|
[23] |
LEE D K, BRENDER J R, SCI AC CA M, et al. Lipid Composition-Dependent Membrane Fragmentation and Pore-Forming Mechanisms of Membrane Disruption by Pexiganan (MSI-78). [J]. Biochemistry, 2013, 52(19): 3254-3263. doi: 10.1021/bi400087n
|
[24] |
CONLON J M, AHMED E, CONDAMINE E. Antimicrobial properties of brevinin-2-related peptide and its analogs: Efficacy against multidrug-resistant Acinetobacter baumannii[J]. Chem Biol Drug Des, 2009, 74(5): 488-493. doi: 10.1111/j.1747-0285.2009.00882.x
|
[25] |
LIU C B, SHAN B, BAI H M, et al. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates[J]. Zool Res, 2015, 36(1): 41-47. http://oaji.net/articles/2015/689-1423732488.pdf
|
[26] |
HUANG S, WANG J H, WANG X Z, et al. Melittin: a key composition of honey bee venom with diverse pharmaceutical function[C]//Proceedings of the 2016 International Conference on Biological Engineering and Pharmacy (BEP 2016). December 9-11, 2016. Shanghai, China. Paris, France: Atlantis Press, 2017: 11-31.
|
[27] |
KIM Y W, CHATURVEDI P K, CHUN S N, et al. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line[J]. Oncol Rep, 2015, 33(4): 1675-1682. doi: 10.3892/or.2015.3760
|
[28] |
AKBARI R, HAKEMI-VALA M, PASHAIE F, et al. Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of Acinetobacter baumannii and Pseudomonas aeruginosa[J]. Microb Drug Resist, 2019, 25(2): 193-202. doi: 10.1089/mdr.2018.0016
|
[29] |
BARDBARI A M, ARABESTANI M R, KARAMI M, et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(3): 443-454. doi: 10.1007/s10096-018-3189-7
|
[30] |
ÖZSEVEN A G. In vitro synergistic activity of carbapenems in combination with other antimicrobial agents against multidrug-resistant Acinetobacter baumannii[J]. Afr J Microbiol Res, 2012, 6(12): 2985-2992. http://academicjournals.org/article/article1380784174_Ozseven%20et%20al.pdf
|
[31] |
STEINER H, HULTMARK D, ENGSTRÖM A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. 1981[J]. J Immunol, 2009, 182(11): 6635-6637. http://www.jimmunol.org/content/182/11/6635.full-text.pdf
|
[32] |
BECHINGER B, LOHNER K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides[J]. Biochim Biophys Acta, 2006, 1758(9): 1529-1539. doi: 10.1016/j.bbamem.2006.07.001
|
[33] |
DURELL S R, RAGHUNATHAN G, GUY H R. Modeling the ion channel structure of cecropin[J]. Biophys J, 1992, 63(6): 1623-1631. doi: 10.1016/S0006-3495(92)81730-7
|
[34] |
GIACOMETTI A, CIRIONI O, KAMYSZ W, et al. Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7) M(2-9) NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii[J]. Peptides, 2003, 24(9): 1315-1318. doi: 10.1016/j.peptides.2003.08.003
|
[35] |
VILA-FARRES X, GARCIA DE LA MARIA C, LÓPEZ-ROJAS R, et al. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii[J]. Clin Microbiol Infect, 2012, 18(4): 383-387. doi: 10.1111/j.1469-0691.2011.03581.x
|
[36] |
JAYAMANI E, RAJAMUTHIAH R, LARKINS-FORD J, et al. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model[J]. Antimicrob Agents Chemother, 2015, 59(3): 1728-1737. doi: 10.1128/AAC.04198-14
|
[37] |
PENG J, WU Z Y, LIU W W, et al. Antimicrobial functional divergence of the cecropin antibacterial peptide gene family in Musca domestica[J]. Parasit Vectors, 2019, 12(1): 537. doi: 10.1186/s13071-019-3793-0
|
[38] |
GUI S Q, LI R J, FENG Y W, et al. Transmission electron microscopic morphological study and flow cytometric viability assessment of Acinetobacter baumannii susceptible to Musca domestica cecropin[J]. Sci World J, 2014, 2014: 657536. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.814.70&rep=rep1&type=pdf
|
[39] |
CHOI K Y, NAPPER S, MOOKHERJEE N. Human cathelicidin LL-37 and its derivative IG-19 regulate interleukin-32-induced inflammation[J]. Immunology, 2014, 143(1): 68-80. doi: 10.1111/imm.12291
|
[40] |
RUDEN S, RIEDER A, CHIS STER I, et al. Synergy pattern of short cationic antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa[J]. Front Microbiol, 2019, 10: 2740. doi: 10.3389/fmicb.2019.02740
|