GUO Tingting, LU Chaorong, GAO Jie, KAI Longxin, SUN Xiaoli, YANG Liying, JIAO Hongmei, KONG Guimei, LI Guocai. Research progress on animal-derived antimicrobial peptides for treatment of Acinetobacter baumannii infection[J]. Journal of Clinical Medicine in Practice, 2021, 25(19): 123-127, 132. DOI: 10.7619/jcmp.20212032
Citation: GUO Tingting, LU Chaorong, GAO Jie, KAI Longxin, SUN Xiaoli, YANG Liying, JIAO Hongmei, KONG Guimei, LI Guocai. Research progress on animal-derived antimicrobial peptides for treatment of Acinetobacter baumannii infection[J]. Journal of Clinical Medicine in Practice, 2021, 25(19): 123-127, 132. DOI: 10.7619/jcmp.20212032

Research progress on animal-derived antimicrobial peptides for treatment of Acinetobacter baumannii infection

More Information
  • Received Date: May 15, 2021
  • Available Online: October 27, 2021
  • Published Date: October 14, 2021
  • Acinetobacter baumannii, a Gram-negative bacterium, is one of the most important pathogens. Due to the abuse of antibiotics, the detection rate of multi-drug resistant Acinetobacter baumannii is increasing. Antimicrobial peptides have been considered as alternatives to the treatment of bacterial infections, which are naturally produced from organisms, and have rapid killing and high-efficiency broad-spectrum antimicrobial activities. This paper reviewed the function, mechanism and application prospect of several kinds of antimicrobial peptides in the treatment of Acinetobacter baumannii.
  • [1]
    VILA J, PACHÓN J. Therapeutic options for Acinetobacter baumannii infections[J]. Expert Opin Pharmacother, 2008, 9(4): 587-599. doi: 10.1517/14656566.9.4.587
    [2]
    BENDINELLI M, FRIEDMAN H, BERGOGNE-BÉRÉZIN E. Acinetobacter biology and pathogenesis[M]. Springer-Verlag New YorkInc., 1988: 1-113.
    [3]
    JASKIEWICZ M, NEUBAUER D, KAZOR K, et al. Antimicrobial activity of selected antimicrobial peptides against planktonic culture and biofilm of Acinetobacter baumannii[J]. Probiotics Antimicrob Proteins, 2019, 11(1): 317-324. doi: 10.1007/s12602-018-9444-5
    [4]
    DAS NEVES R C, MORTARI M R, SCHWARTZ E F, et al. Antimicrobial and antibiofilm effects of peptides from venom of social wasp and scorpion on multidrug-resistant Acinetobacter baumannii[J]. Toxins (Basel), 2019, 11(4): E216. doi: 10.3390/toxins11040216
    [5]
    WUERTH K, HANCOCK R E. New insights into cathelicidin modulation of adaptive immunity[J]. Eur J Immunol, 2011, 41(10): 2817-2819. doi: 10.1002/eji.201142055
    [6]
    CHOWANSKI S, ADAMSKI Z, LUBAWY J, et al. Insect peptides-perspectives in human diseases treatment[J]. Curr Med Chem, 2017, 24(29): 3116-3152.
    [7]
    杨浩, 罗鹏程, 付靖瑜, 等. 抗菌肽LL-37序列分析与结构研究[J]. 中华医院感染学杂志, 2016, 26(22): 5076-5079. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201622012.htm
    [8]
    MARTYNOWYCZ M W, RICE A, ANDREEV K, et al. Salmonella membrane structural remodeling increases resistance to antimicrobial peptide LL-37[J]. ACS Infect Dis, 2019, 5(7): 1214-1222. doi: 10.1021/acsinfecdis.9b00066
    [9]
    LIN M F, LIN Y Y, LAN C Y. Characterization of biofilm production in different strains of Acinetobacter baumannii and the effects of chemical compounds on biofilm formation[J]. PeerJ, 2020, 8: e9020. doi: 10.7717/peerj.9020
    [10]
    FENG X R, SAMBANTHAMOORTHY K, PALYS T, et al. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii[J]. Peptides, 2013, 49: 131-137. doi: 10.1016/j.peptides.2013.09.007
    [11]
    KWON H I, KIM S, OH M H, et al. Distinct role of outer membrane protein A in the intrinsic resistance of Acinetobacter baumannii and Acinetobacter nosocomialis[J]. Infect Genet Evol, 2019, 67: 33-37. doi: 10.1016/j.meegid.2018.10.022
    [12]
    LIN M F, TSAI P W, CHEN J Y, et al. OmpA binding mediates the effect of antimicrobial peptide LL-37 on Acinetobacter baumannii[J]. PLoS One, 2015, 10(10): e0141107. doi: 10.1371/journal.pone.0141107
    [13]
    WANG C, SHEN M, ZHANG N, et al. Reduction impairs the antibacterial activity but benefits the LPS neutralization ability of human enteric defensin 5[J]. Sci Rep, 2016, 6: 22875. doi: 10.1038/srep22875
    [14]
    GOUNDER A P, MYERS N D, TREUTING P M, et al. Defensins potentiate a neutralizing antibody response to enteric viral infection[J]. PLoS Pathog, 2016, 12(3): e1005474. doi: 10.1371/journal.ppat.1005474
    [15]
    PAZGIER M, LI X Q, LU W Y, et al. Human defensins: synthesis and structural properties[J]. Curr Pharm Des, 2007, 13(30): 3096-3118. doi: 10.2174/138161207782110381
    [16]
    WANG C, ZHAO G M, WANG S, et al. A simplified derivative of human defensin 5 with potent and efficient activity against multidrug-resistant Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2018, 62(2): e01504-e01517. http://aac.asm.org/content/62/2/e01504-17.full-text.pdf
    [17]
    TAKEDA K, AKIRA S. Toll-like receptors in innate immunity[J]. Int Immunol, 2005, 17(1): 1-14. http://203.18.51.96:8080/jspui/bitstream/123456789/65/1/14-HK.pdf
    [18]
    FENG Z, JIA X, ADAMS M D, et al. Epithelial innate immune response to Acinetobacter baumannii challenge[J]. Infect Immun, 2014, 82(11): 4458-4465. doi: 10.1128/IAI.01897-14
    [19]
    KIM M K, KANG N, KO S J, et al. Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant Acinetobacter baumannii[J]. Int J Mol Sci, 2018, 19(10): E3041. doi: 10.3390/ijms19103041
    [20]
    GOTTLER L M, RAMAMOORTHY A. Structure, membrane orientation, mechanism, and function of pexiganan: a highly potent antimicrobial peptide designed from Magainin[J]. Biochim Biophys Acta, 2009, 1788(8): 1680-1686. doi: 10.1016/j.bbamem.2008.10.009
    [21]
    FUCHS P C, BARRY A L, BROWN S D. In vitro antimicrobial activity of MSI-78, a Magainin analog[J]. Antimicrob Agents Chemother, 1998, 42(5): 1213-1216. doi: 10.1128/AAC.42.5.1213
    [22]
    NAVON-VENEZIA S, FEDER R, GAIDUKOV L, et al. Antibacterial properties of dermaseptin S4 derivatives with in vivo activity[J]. Antimicrob Agents Chemother, 2002, 46(3): 689-694. doi: 10.1128/AAC.46.3.689-694.2002
    [23]
    LEE D K, BRENDER J R, SCI AC CA M, et al. Lipid Composition-Dependent Membrane Fragmentation and Pore-Forming Mechanisms of Membrane Disruption by Pexiganan (MSI-78). [J]. Biochemistry, 2013, 52(19): 3254-3263. doi: 10.1021/bi400087n
    [24]
    CONLON J M, AHMED E, CONDAMINE E. Antimicrobial properties of brevinin-2-related peptide and its analogs: Efficacy against multidrug-resistant Acinetobacter baumannii[J]. Chem Biol Drug Des, 2009, 74(5): 488-493. doi: 10.1111/j.1747-0285.2009.00882.x
    [25]
    LIU C B, SHAN B, BAI H M, et al. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates[J]. Zool Res, 2015, 36(1): 41-47. http://oaji.net/articles/2015/689-1423732488.pdf
    [26]
    HUANG S, WANG J H, WANG X Z, et al. Melittin: a key composition of honey bee venom with diverse pharmaceutical function[C]//Proceedings of the 2016 International Conference on Biological Engineering and Pharmacy (BEP 2016). December 9-11, 2016. Shanghai, China. Paris, France: Atlantis Press, 2017: 11-31.
    [27]
    KIM Y W, CHATURVEDI P K, CHUN S N, et al. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line[J]. Oncol Rep, 2015, 33(4): 1675-1682. doi: 10.3892/or.2015.3760
    [28]
    AKBARI R, HAKEMI-VALA M, PASHAIE F, et al. Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of Acinetobacter baumannii and Pseudomonas aeruginosa[J]. Microb Drug Resist, 2019, 25(2): 193-202. doi: 10.1089/mdr.2018.0016
    [29]
    BARDBARI A M, ARABESTANI M R, KARAMI M, et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(3): 443-454. doi: 10.1007/s10096-018-3189-7
    [30]
    ÖZSEVEN A G. In vitro synergistic activity of carbapenems in combination with other antimicrobial agents against multidrug-resistant Acinetobacter baumannii[J]. Afr J Microbiol Res, 2012, 6(12): 2985-2992. http://academicjournals.org/article/article1380784174_Ozseven%20et%20al.pdf
    [31]
    STEINER H, HULTMARK D, ENGSTRÖM A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. 1981[J]. J Immunol, 2009, 182(11): 6635-6637. http://www.jimmunol.org/content/182/11/6635.full-text.pdf
    [32]
    BECHINGER B, LOHNER K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides[J]. Biochim Biophys Acta, 2006, 1758(9): 1529-1539. doi: 10.1016/j.bbamem.2006.07.001
    [33]
    DURELL S R, RAGHUNATHAN G, GUY H R. Modeling the ion channel structure of cecropin[J]. Biophys J, 1992, 63(6): 1623-1631. doi: 10.1016/S0006-3495(92)81730-7
    [34]
    GIACOMETTI A, CIRIONI O, KAMYSZ W, et al. Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7) M(2-9) NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii[J]. Peptides, 2003, 24(9): 1315-1318. doi: 10.1016/j.peptides.2003.08.003
    [35]
    VILA-FARRES X, GARCIA DE LA MARIA C, LÓPEZ-ROJAS R, et al. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii[J]. Clin Microbiol Infect, 2012, 18(4): 383-387. doi: 10.1111/j.1469-0691.2011.03581.x
    [36]
    JAYAMANI E, RAJAMUTHIAH R, LARKINS-FORD J, et al. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model[J]. Antimicrob Agents Chemother, 2015, 59(3): 1728-1737. doi: 10.1128/AAC.04198-14
    [37]
    PENG J, WU Z Y, LIU W W, et al. Antimicrobial functional divergence of the cecropin antibacterial peptide gene family in Musca domestica[J]. Parasit Vectors, 2019, 12(1): 537. doi: 10.1186/s13071-019-3793-0
    [38]
    GUI S Q, LI R J, FENG Y W, et al. Transmission electron microscopic morphological study and flow cytometric viability assessment of Acinetobacter baumannii susceptible to Musca domestica cecropin[J]. Sci World J, 2014, 2014: 657536. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.814.70&rep=rep1&type=pdf
    [39]
    CHOI K Y, NAPPER S, MOOKHERJEE N. Human cathelicidin LL-37 and its derivative IG-19 regulate interleukin-32-induced inflammation[J]. Immunology, 2014, 143(1): 68-80. doi: 10.1111/imm.12291
    [40]
    RUDEN S, RIEDER A, CHIS STER I, et al. Synergy pattern of short cationic antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa[J]. Front Microbiol, 2019, 10: 2740. doi: 10.3389/fmicb.2019.02740
  • Related Articles

    [1]YANG Hui, XIONG Yuan, CHENG Long, QIAN Ming, JI Li. Mechanism of Dengzhan Shengmai capsule in treating coronary heart disease based on network pharmacology and molecular docking technology[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 1-8, 14. DOI: 10.7619/jcmp.20240541
    [2]GAO Yin, ZHANG Lihong, ZHANG Zhibin, HU Xichi. Mechanism on antibacterial effect in vitro and biofilm eradication effect of Xiaochaihu Decoction and imipenem-cilastatin for carbapenem-resistant Acinetobacter baumannii[J]. Journal of Clinical Medicine in Practice, 2022, 26(18): 72-77. DOI: 10.7619/jcmp.20220063
    [3]LI Wenji, HU Fang, XU Wei. Mechanism of Chuanlong Anti-cancer Decoction in treatment of prostate cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 18-23. DOI: 10.7619/jcmp.20214121
    [4]JIN Xuening, LIN Fei, FENG Xinyi, LI Cen, CUI Shu′na. Mechanism of docetaxel in treatment of choriocarcinoma based on network pharmacology[J]. Journal of Clinical Medicine in Practice, 2022, 26(1): 18-21. DOI: 10.7619/jcmp.20213494
    [5]QIN Wei, YIN Zixin, HUA Weiwei, WANG Yujie, WANG Yang, DENG Jialin, CAI Zhaoying, QIAN Yayun. Mechanisms of Marsdenia tenacissima in inhibiting gastric cancer based on network pharmacologyand molecular docking technology[J]. Journal of Clinical Medicine in Practice, 2022, 26(1): 1-7,17. DOI: 10.7619/jcmp.20213297
    [6]YANG Mei, Dilimeiheri·DILIXIATI, ZHAO Feicui. Anti-ovarian cancer mechanism of processed products of Aconitum soongaricum Stapf. based on network pharmacology[J]. Journal of Clinical Medicine in Practice, 2021, 25(24): 1-9. DOI: 10.7619/jcmp.20213376
    [7]CHEN Jiaqi, QIAN Yiming, QIAN Fenghua, Li Jing, LIAN Jiaming, CHEN Xiaotong, LIN Baibai, DING Chunlei. Mechanism of acupuncture in the treatment of acute gastrointestinal injury based on brain-gut peptide[J]. Journal of Clinical Medicine in Practice, 2021, 25(18): 120-123. DOI: 10.7619/jcmp.20211167
    [8]LI Hui, CAO Boya, REN Lutong, WEI Ziying, LI Jiayi, GUO Yuanyuan, WANG Wei, CAO Junling. Exploration on therapeutic mechanisms of Zhishangfeng Granules for common cold based on network pharmacology[J]. Journal of Clinical Medicine in Practice, 2021, 25(12): 18-23, 41. DOI: 10.7619/jcmp.20211607
    [9]LIU Fu-di. Study on the inhibitory effect of antimicrobial peptides-thanatin against staphylococcus aureus[J]. Journal of Clinical Medicine in Practice, 2011, (13): 94-95. DOI: 10.3969/j.issn.1672-2353.2011.13.036
    [10]YE MING, XU Xiu-li, WANG GANG, YANG Xi-min. The analysis of drug resistance phenotype and in vitro antimicrobial agent combination activity against carbapenems -resistant acinetobacter baumannii[J]. Journal of Clinical Medicine in Practice, 2011, (11): 44-46. DOI: 10.3969/j.issn.1672-2353.2011.11.014

Catalog

    Article views (247) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return