SHAO Rui, XU Tiantong, TIAN Rong. Research progress of application of three dimensionalfinite element model in percutaneous endoscopic lumbar discectomy[J]. Journal of Clinical Medicine in Practice, 2021, 25(20): 128-132. DOI: 10.7619/jcmp.20213142
Citation: SHAO Rui, XU Tiantong, TIAN Rong. Research progress of application of three dimensionalfinite element model in percutaneous endoscopic lumbar discectomy[J]. Journal of Clinical Medicine in Practice, 2021, 25(20): 128-132. DOI: 10.7619/jcmp.20213142

Research progress of application of three dimensionalfinite element model in percutaneous endoscopic lumbar discectomy

More Information
  • Received Date: August 04, 2021
  • Available Online: September 29, 2021
  • Published Date: October 27, 2021
  • Percutaneous endoscopic lumbar discectomy (PELD) has unique advantages in the treatment of lumbar disc herniation, and the researches on PELD have become the hot research spots. The three dimensional finite element model has been used to explore the effect of surgery on lumbar biomechanics, which has the advantages of low costs, high efficiency, easy adjustment of experimental scheme and high repeatability, and the research results are of great significance for the guidance of surgical scheme, the evaluation of postoperative lumbar stability, and the stress analysis of postoperative lumbar spine and internal fixation. At present, there are many clinical studies on the application of three dimensional finite element model in PELD, but there are few summary reviews on the above studies. This paper reviewed the three dimensional finite element researches related to PELD, in order to further put forward the scientific research directions with potential research value.
  • [1]
    HUANG W, HAN Z, LIU J, et al. Risk factors for recurrent lumbar disc herniation: a systematic review and meta-analysis[J]. Medicine: Baltimore, 2016, 95(2): e2378. doi: 10.1097/MD.0000000000002378
    [2]
    MAHESHA K. Percutaneous endoscopic lumbar discectomy: Results of first 100 cases[J]. Indian J Orthop, 2017, 51(1): 36-42. doi: 10.4103/0019-5413.197520
    [3]
    LV Q B, GAO X, PAN X X, et al. Biomechanical properties of novel transpedicular transdiscal screw fixation with interbody arthrodesis technique in lumbar spine: a finite element study[J]. J Orthop Translat, 2018, 15: 50-58. doi: 10.1016/j.jot.2018.08.005
    [4]
    AYTURK U M, PUTTLITZ C M. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine[J]. Comput Methods Biomech Biomed Engin, 2011, 14(8): 695-705. doi: 10.1080/10255842.2010.493517
    [5]
    NEWCOMB A G, BAEK S, KELLY B P, et al. Effect of screw position on load transfer in lumbar pedicle screws: a non-idealized finite element analysis[J]. Comput Methods Biomech Biomed Engin, 2017, 20(2): 182-192. doi: 10.1080/10255842.2016.1209187
    [6]
    XU M, YANG J, LIEBERMAN I, et al. Stress distribution in vertebral bone and pedicle screw and screw-bone load transfers among various fixation methods for lumbar spine surgical alignment: a finite element study[J]. Med Eng Phys, 2019, 63: 26-32. doi: 10.1016/j.medengphy.2018.10.003
    [7]
    WANG B, KE W, HUA W, et al. Biomechanical evaluation of anterior and posterior lumbar surgical approaches on the adjacent segment: a finite element analysis[J]. Comput Methods Biomech Biomed Engin, 2020, 23(14): 1109-1116. doi: 10.1080/10255842.2020.1789605
    [8]
    JAIN P, KHAN M R. Selection of suitable pedicle screw for degenerated cortical and cancellous bone of human lumbar spine: a finite element study[J]. Int J Artif Organs, 2021, 44(5): 361-366. doi: 10.1177/0391398820964483
    [9]
    SHIM C S, PARK S W, LEE S H, et al. Biomechanical evaluation of an interspinous stabilizing device, Locker[J]. Spine: Phila Pa 1976, 2008, 33(22): E820-E827. doi: 10.1097/BRS.0b013e3181894fb1
    [10]
    余洋, 樊效鸿, 顾党伟, 等. 腰椎经皮内镜下不同部位关节突成形对相关节段活动度的影响[J]. 医用生物力学, 2019, 34(1): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX201901006.htm
    [11]
    TU Z M, WANG B, LI L, et al. Early experience of full-endoscopic interlaminar discectomy for adolescent lumbar disc herniation with sciatic scoliosis[J]. Pain Physician, 2018, 21(1): E63-E70.
    [12]
    CHOI K C, KIM J S, RYU K S, et al. Percutaneous endoscopic lumbar discectomy for L5-S1 disc herniation: transforaminal versus interlaminar approach[J]. Pain Physician, 2013, 16(6): 547-556.
    [13]
    BERMEL E A, BAROCAS V H, ELLINGSON A M. The role of the facet capsular ligament in providing spinal stability[J]. Comput Methods Biomech Biomed Engin, 2018, 21(13): 712-721. doi: 10.1080/10255842.2018.1514392
    [14]
    董江, 赵斌, 王永峰, 等. 腰椎经皮内镜双侧椎间孔一次成形的有限元分析[J]. 临床骨科杂志, 2021, 24(1): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGK202101063.htm
    [15]
    庞胤, 尹帅, 赵长义, 等. 脊柱腰段三维有限元模型的构建与椎间盘应力分析[J]. 河北医科大学学报, 2019, 40(12): 1368-1371. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYX201912003.htm
    [16]
    LI J, ZHANG X, XU W, et al. Reducing the extent of facetectomy may decrease morbidity in failed back surgery syndrome[J]. BMC Musculoskelet Disord, 2019, 20(1): 369. doi: 10.1186/s12891-019-2751-5
    [17]
    谢一舟, 简强, 吴昊阳, 等. 不同入路经皮内窥镜下关节成形术对椎间盘生物力学影响的三维有限元分析[J]. 中国脊柱脊髓杂志, 2020, 30(2): 151-158. doi: 10.3969/j.issn.1004-406X.2020.02.09
    [18]
    XIE Y Z, WANG X, JIAN Q, et al. Three dimensional finite element analysis used to study the influence of the stress and strain of the operative and adjacent segments through different foraminnoplasty technique in the PELD: Study protocol clinical trial (SPIRIT Compliant)[J]. Medicine: Baltimore, 2020, 99(15): e19670. doi: 10.1097/MD.0000000000019670
    [19]
    XIE Y Z, ZHOU Q, WANG X L, et al. The biomechanical effects of foraminoplasty of different areas under lumbar percutaneous endoscopy on intervertebral discs: a 3D finite element analysis[J]. Medicine, 2020, 99(17): e19847. doi: 10.1097/MD.0000000000019847
    [20]
    余洋, 樊效鸿, 顾党伟, 等. 腰椎经皮内镜下不同部位关节突成形对椎间盘力学影响的三维有限元分析[J]. 重庆医学, 2019, 48(1): 120-123. doi: 10.3969/j.issn.1671-8348.2019.01.030
    [21]
    YU Y, ZHOU Q, XIE Y Z, et al. Effect of percutaneous endoscopic lumbar foraminoplasty of different facet joint portions on lumbar biomechanics: a finite element analysis[J]. Orthop Surg, 2020, 12(4): 1277-1284. doi: 10.1111/os.12740
    [22]
    LI X R, YU J, ZHANG W, et al. Biomechanical model study of the effect of partial facetectomy on lumbar stability under percutaneous endoscopy[J]. World Neurosurg, 2020, 139: e255-e264. doi: 10.1016/j.wneu.2020.03.190
    [23]
    AHUJA S, MOIDEEN A N, DUDHNIWALA A G, et al. Lumbar stability following graded unilateral and bilateral facetectomy: a finite element model study[J]. Clin Biomech: Bristol, Avon, 2020, 75: 105011. doi: 10.1016/j.clinbiomech.2020.105011
    [24]
    QIAN J, YU S S, LIU J J, et al. Biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy[J]. Zhonghua Yi Xue Za Zhi, 2018, 98(13): 1013-1018.
    [25]
    段星星, 李宇卫, 沈晓峰, 等. 经皮椎间孔镜髓核摘除术后椎间盘生物力学改变的有限元分析[J]. 中国内镜杂志, 2020, 26(11): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNJ202011008.htm
    [26]
    MYSLIWIEC L W, CHOLEWICKI J, WINKELPLECK M D, et al. MSU classification for herniated lumbar discs on MRI: toward developing objective criteria for surgical selection[J]. Eur Spine J, 2010, 19(7): 1087-1093. doi: 10.1007/s00586-009-1274-4
    [27]
    李海波, 方杰, 陈其昕, 等. 有限元模型分析髓核摘除术后腰椎生物力学特性变化[J]. 第二军医大学学报, 2011, 32(6): 645-649. https://www.cnki.com.cn/Article/CJFDTOTAL-DEJD201106019.htm
    [28]
    郭清华, 黄鹏. 经皮内镜腰椎间盘髓核摘除术后脊柱生物力学改变的有限元分析[J]. 山东医药, 2018, 58(13): 74-77. doi: 10.3969/j.issn.1002-266X.2018.13.024
    [29]
    PARK P, GARTON H J, GALA V C, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature[J]. Spine: Phila Pa 1976, 2004, 29(17): 1938-1944. doi: 10.1097/01.brs.0000137069.88904.03
    [30]
    KIM H J, KANG K T, CHUN H J, et al. The influence of intrinsic disc degeneration of the adjacent segments on its stress distribution after one-level lumbar fusion[J]. Eur Spine J, 2015, 24(4): 827-837. doi: 10.1007/s00586-014-3462-0
    [31]
    ADAMS M A, ROUGHLEY P J. What is intervertebral disc degeneration, and what causes it?[J]. Spine: Phila Pa 1976, 2006, 31(18): 2151-2161. doi: 10.1097/01.brs.0000231761.73859.2c
    [32]
    徐文强, 张啸宇, 王楠, 等. 腰椎内镜下髓核摘除术对不同退变程度邻近节段椎间盘生物力学影响的有限元分析[J]. 中国骨伤, 2021, 34(1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGU202101008.htm
    [33]
    YANG P, ZHANG Y, DING H W, et al. Pedicle screw fixation with kyphoplasty decreases the fracture risk of the treated and adjacent non-treated vertebral bodies: a finite element analysis[J]. Journal of Huazhong University of Science and Technology[Medical Sciences]2016, 36(6): 887-894. doi: 10.1007/s11596-016-1680-x
    [34]
    LI J, XU W, ZHANG X, et al. Biomechanical role of osteoporosis affects the incidence of adjacent segment disease after percutaneous transforaminal endoscopic discectomy[J]. J Orthop Surg Res, 2019, 14(1): 131. doi: 10.1186/s13018-019-1166-1
    [35]
    ZHU R, NIU W X, ZENG Z L, et al. The effects of muscle weakness on degenerative spondylolisthesis: a finite element study[J]. Clin Biomech: Bristol, Avon, 2017, 41: 34-38. doi: 10.1016/j.clinbiomech.2016.11.007
    [36]
    HA K Y, CHANG C H, KIM K W, et al. Expression of estrogen receptor of the facet joints in degenerative spondylolisthesis[J]. Spine, 2005, 30(5): 562-566. doi: 10.1097/01.brs.0000154674.16708.af
    [37]
    LI J C, XU W Q, JIANG Q F, et al. Indications selection for surgeons training in the translaminar percutaneous endoscopic discectomy based on finite element analysis[J]. Biomed Res Int, 2020, 2020: 2960642.
    [38]
    KITAHAMA Y, OHASHI H, NAMBA H, et al. Finite element method for nerve root decompression in minimally invasive endoscopic spinal surgery[J]. Asian J Endosc Surg, 2021, 14(3): 628-635. doi: 10.1111/ases.12879
    [39]
    LEE G W, LEE S M, SUH B G. The impact of generalized joint laxity on the occurrence and disease course of primary lumbar disc herniation[J]. Spine J, 2015, 15(1): 65-70. doi: 10.1016/j.spinee.2014.06.028
    [40]
    PFIRRMANN C W, METZDORF A, ZANETTI M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration[J]. Spine: Phila Pa 1976, 2001, 26(17): 1873-1878. doi: 10.1097/00007632-200109010-00011
  • Related Articles

    [1]LI Wenqi, LI Jun, LIU Kun, ZHANG Hongwei, SHI Danwei, YOU Huichao. Summary of experience in transcranial Doppler ultrasound monitoring during initial performing carotid endarterectomy[J]. Journal of Clinical Medicine in Practice, 2021, 25(17): 11-14. DOI: 10.7619/jcmp.20212371
    [2]LUO Aihua, BAO Rong, WU Tiantian, ZHU Jianlin. Value of color Doppler flow imaging combined with fetal non-stress test in diagnosis of fetal distress[J]. Journal of Clinical Medicine in Practice, 2020, 24(20): 100-102,107. DOI: 10.7619/jcmp.202020028
    [3]ZHONG Shujuan, WANG Yingjin. Value of color Doppler ultrasonography in evaluation of endometrial thickness and ovarian hemodynamics of patients with polycystic ovary syndrome[J]. Journal of Clinical Medicine in Practice, 2020, 24(11): 32-34. DOI: 10.7619/jcmp.202011009
    [4]CAO Jing. Value of transvaginal color Doppler ultrasonography in differential diagnosis of threatened abortion in pregnant women in early pregnancy[J]. Journal of Clinical Medicine in Practice, 2020, 24(9): 94-96. DOI: 10.7619/jcmp.202009027
    [5]LI Yanli, ZHU Xiaoxu, LIU Ying. Value of high frequency color Doppler ultrasonography in diagnosis of children with intussusception[J]. Journal of Clinical Medicine in Practice, 2018, (5): 101-103,107. DOI: 10.7619/jcmp.201805031
    [6]LI Wei. Analysis of color Doppler ultrasonography and two-dimensional ultrasonography in the diagnosis of cicatricial uterus complicated with placenta previa[J]. Journal of Clinical Medicine in Practice, 2018, (1): 98-100. DOI: 10.7619/jcmp.201801030
    [7]DING Lidong, XIAO Zhanghong, MAO Huawu, LYU Xiaobo, WU Sisi, KE Kaifu. Value of transcranial Doppler ultrasonography examination in predicting prognosis of patients with acute cerebral infarction[J]. Journal of Clinical Medicine in Practice, 2016, (21): 24-26. DOI: 10.7619/jcmp.201621008
    [8]LIU Bin, HUANG Xingtao, CHEN Qiuling. Feasibility of Doppler ultrasound for fetal pulmonary artery in prediction of fetus lung maturity[J]. Journal of Clinical Medicine in Practice, 2015, (17): 64-66. DOI: 10.7619/jcmp.201517020
    [9]LI Tao, LIN Jianying, CHEN Ru, LIU Guancheng. Diagnostic value of high-frequency color Doppler ultrasonography in identifying axillary enlarged lymph nodes of breast cancer[J]. Journal of Clinical Medicine in Practice, 2014, (7): 73-75. DOI: 10.7619/jcmp.201407023
    [10]WANG Yuehua. Application of high frequency color Doppler ultrasonography in diagnosis of child intussusceptions[J]. Journal of Clinical Medicine in Practice, 2013, (15): 162-164. DOI: 10.7619/jcmp.201315062
  • Cited by

    Periodical cited type(9)

    1. 曹文彬,谢鹏,杨晓玲,王建慧,李秋艳,祁静波. 右美托咪定在尿毒症继发性甲状旁腺功能亢进症患者全身麻醉手术中应用效果观察. 临床军医杂志. 2024(08): 797-799 .
    2. 李亚琴. 舒芬太尼复合罗哌卡因硬膜外麻醉在分娩镇痛中应用效果. 大医生. 2023(01): 22-24 .
    3. 刘海涛,田利川,赵贺,王圣华,李亚华. 右美托咪定复合布托啡诺对超重、肥胖经产妇分娩镇痛效果的影响. 西部医学. 2023(05): 715-718+723 .
    4. 陈晓欢,王鑫. 右美托咪定复合罗哌卡因用于硬膜外分娩镇痛的效果. 智慧健康. 2022(05): 110-113+121 .
    5. 严伟,杨同文,廖春英. 右美托咪定联合罗哌卡因肌间沟神经阻滞对患者镇痛效果及脑电双频指数值的影响. 中国当代医药. 2022(23): 126-129 .
    6. 田利川,王圣华,赵贺,刘海涛,李亚华,戚娟,王月新. 不同剂量右美托咪定复合布托啡诺硬膜外麻醉辅助分娩镇痛临床评价. 中国药业. 2022(20): 94-97 .
    7. 陈淑惠,卢美丹. 硬膜外分娩镇痛结合一对一分娩陪护在自然分娩中的应用研究. 中国医学创新. 2022(34): 114-117 .
    8. 黄惠琼,廖艺聪,贾俊香. 右美托咪定用于硬膜外分娩镇痛中突破性疼痛的临床回顾分析. 中国卫生标准管理. 2022(24): 134-139 .
    9. 翟翰芳,王玉,房倩倩. 低位水囊引产联合硬膜外分娩镇痛在产妇中的应用观察. 深圳中西医结合杂志. 2021(18): 159-161 .

    Other cited types(3)

Catalog

    Article views (260) PDF downloads (9) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return