Citation: | HAN Bei, HAN Junling, CAO Jinghao, YU Yang, GONG Qin. Relation between intact fibroblast growth factor 23 and renal anemia in maintenance hemodialysis patients[J]. Journal of Clinical Medicine in Practice, 2021, 25(21): 114-118. DOI: 10.7619/jcmp.20213812 |
[1] |
ECKARDT K U, AGARWAL R, ASWAD A, et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis[J]. N Engl J Med, 2021, 384(17): 1601-1612. doi: 10.1056/NEJMoa2025956
|
[2] |
BABITT J L, LIN H Y. Mechanisms of anemia in ckd[J]. J Am Soc Nephrol, 2012, 23(10): 1631-1634. doi: 10.1681/ASN.2011111078
|
[3] |
PATEL N M, GUTIE RREZ O M, ANDRESS D L, et al. Vitamin D deficiency and anemia in early chronic kidney disease[J]. Kidney Int, 2010, 77(8): 715-720. doi: 10.1038/ki.2009.551
|
[4] |
AGORO R, MONTAGNA A, GOETZ R, et al. Inhibition of fibroblast growth factor 23(FGF23) signaling rescues renal anemia[J]. FASEB J, 2018, 32(7): 3752-3764. doi: 10.1096/fj.201700667R
|
[5] |
EDMONSTON D, WOLF M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis[J]. Nat Rev Nephrol, 2020, 16(1): 7-19. doi: 10.1038/s41581-019-0189-5
|
[6] |
CHEN G, LIU Y, GOETZ R, et al. A-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling[J]. Nature, 2018, 553(7689): 461-466. doi: 10.1038/nature25451
|
[7] |
TORO L, BARRIENTOS V, LEÓN P, et al. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury[J]. Kidney Int, 2018, 93(5): 1131-1141. doi: 10.1016/j.kint.2017.11.018
|
[8] |
中国医师协会肾脏内科医师分会肾性贫血指南工作组. 中国肾性贫血诊治临床实践指南[J]. 中华医学杂志, 2021, 101(20): 1463-1502. doi: 10.3760/cma.j.cn112137-20210201-00309
|
[9] |
FAUL C, AMARAL A P, OSKOUEI B, et al. FGF23 induces left ventricular hypertrophy[J]. J Clin Invest, 2011, 121(11): 4393-4408. doi: 10.1172/JCI46122
|
[10] |
DAVID V, DAI B, MARTIN A, et al. Calcium regulates FGF-23 expression in bone[J]. Endocrinology, 2013, 154(12): 4469-4482. doi: 10.1210/en.2013-1627
|
[11] |
MEIR T, DURLACHER K, PAN Z, et al. Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription[J]. Kidney Int, 2014, 86(6): 1106-1115. doi: 10.1038/ki.2014.215
|
[12] |
BABITT J L, SITARA D. Crosstalk between fibroblast growth factor 23, iron, erythropoietin, and inflammation in kidney disease[J]. Curr Opin Nephrol Hypertens, 2019, 28(4): 304-310. doi: 10.1097/MNH.0000000000000514
|
[13] |
DAVID V, MARTIN A, ISAKOVA T, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production[J]. Kidney Int, 2016, 89(1): 135-146. doi: 10.1038/ki.2015.290
|
[14] |
TSAI M H, LEU J G, FANG Y W, et al. High fibroblast growth factor 23 levels associated with low hemoglobin levels in patients with chronic kidney disease stages 3 and 4[J]. Medicine: Baltimore, 2016, 95(11): e3049. doi: 10.1097/MD.0000000000003049
|
[15] |
MEHTA R, CAI X, HODAKOWSKI A, et al. Fibroblast growth factor 23 and anemia in the chronic renal insufficiency cohort study[J]. Clin J Am Soc Nephrol, 2017, 12(11): 1795-1803. doi: 10.2215/CJN.03950417
|
[16] |
GUTIÉRREZ O M, MANNSTADT M, ISAKOVA T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis[J]. N Engl J Med, 2008, 359(6): 584-592. doi: 10.1056/NEJMoa0706130
|
[17] |
STEINMAN T I. Serum albumin: its significance in patients with ESRD[J]. Semin Dial, 2000, 13(6): 404-408. doi: 10.1046/j.1525-139x.2000.00110.x
|
[18] |
YANG C, MENG Q, WANG H, et al. Anemia and kidney function decline among the middle-aged and elderly in China: a population-based national longitudinal study[J]. Biomed Res Int, 2020, 2020: 2303541. http://www.researchgate.net/publication/346103092_Anemia_and_Kidney_Function_Decline_among_the_Middle-Aged_and_Elderly_in_China_A_Population-Based_National_Longitudinal_Study/download
|
[19] |
曹婧媛, 刘必成. 低氧诱导因子-脯氨酸羟化酶轴在肾性贫血中的作用机制研究进展[J]. 生理学报, 2018, 70(6): 623-629. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXU201806006.htm
|