Citation: | YAN Zeying, SUN Haimin, CHEN Yu. Clinical observation of venetoclax in treatment of relapsed or refractory acute myeloid leukemia[J]. Journal of Clinical Medicine in Practice, 2022, 26(3): 91-94. DOI: 10.7619/jcmp.20214194 |
[1] |
DINARDO C D, RAUSCH C R, BENTON C, et al. Clinical experience with the Bcl-2inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies[J]. American Journal of Hematology, 2018, 93(3): 401-407. doi: 10.1002/ajh.25000
|
[2] |
BYRNE M, DANIELSON N, SENGSAYADETH S, et al. The use of venetoclax-based salvage therapy for post-hematopoietic cell transplantation relapse of acute myeloid leukemia[J]. American Journal of Hematology, 2020, 95: 1006-1014. doi: 10.1002/ajh.25859
|
[3] |
BEWERSDORF J P, GIRI S, WANG R, et al. Venetoclax as monotherapy and in combination with hypomethylating agents or low dose cytarabine in relapsed and treatment refractory acute myeloid leukemia: a systematic review and meta-analysis[J]. Haematologica, 2020, 105(11): 242826.
|
[4] |
DINARDO C D, JONAS B A, PULLARKAT V, et al. Azacitidine and venetoclax in Previously Untreated Acute Myeloid Leukemia[J]. New England Journal of Medicine, 2020, 383(7): 617-629. doi: 10.1056/NEJMoa2012971
|
[5] |
DINARDO C D, PRATZ K, POTLURI J, et al. Durable Response with venetoclax in Combination with Decitabine or Azacitidine in Elderly Patients with Acute Myeloid Leukemia (AML)[J]. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18(Suppl 1): S201.
|
[6] |
MEI M, ALDOSS I, MARCUCCI G, et al. Hypomethylating agents in combination with venetoclax for acute myeloid leukemia: Update on clinical trial data and practical considerations for use[J]. American Journal of Hematology, 2019, 94(3): 358-362.
|
[7] |
AGARWAL S, GOPALAKRISHNAN S, MENSING S, et al. Optimizing venetoclax dose in combination with low intensive therapies in elderly patients with newly diagnosed acute myeloid leukemia: An exposure-response analysis[J]. Hematological Oncology, 2019, 37(4): 464-473. doi: 10.1002/hon.2646
|
[8] |
JONES A K, FREISE K J, AGARWAL S K, et al. Clinical Predictors of venetoclax Pharmacokinetics in Chronic Lymphocytic Leukemia and Non-Hodgkin's Lymphoma Patients: a Pooled Population Pharmacokinetic Analysis[J]. Aaps Journal, 2016, 18(5): 1-11.
|
[9] |
SALEM A H, DAVE N, MARBURY T, et al. Pharmacokinetics of the Bcl-2 Inhibitor venetoclax in Subjects with Hepatic Impairment[J]. Clinical Pharmacokinetics, 2019, 58(8): 1091-1100. doi: 10.1007/s40262-019-00746-4
|
[10] |
FREISE K J, SHEBLEY M, SALEM A H. Quantitative Prediction of the Effect of CYP3A Inhibitors and Inducers on venetoclax Pharmacokinetics Using a Physiologically Based Pharmacokinetic Model[J]. Journal of Clinical Pharmacology, 2017, 57(6): 796-804. doi: 10.1002/jcph.858
|
[11] |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646. doi: 10.1016/j.cell.2011.02.013
|
[12] |
WONG R S. Apoptosis in cancer: from pathogenesis to treatment[J]. Journal of Experimental & Clinical Cancer Research, 2011, 30(1): 87-87.
|
[13] |
PFEFFER C M, ATK S. Apoptosis: A Target for Anticancer Therapy[J]. International Journal of Molecular Sciences, 2018, 19(2): 448-454. doi: 10.3390/ijms19020448
|
[14] |
CROCE C M, REED J C. Finally, An Apoptosis-Targeting Therapeutic for Cancer[J]. Cancer Research, 2016, 76(20): 5914-5920. doi: 10.1158/0008-5472.CAN-16-1248
|
[15] |
PRONIER E, ROSS L L. IDH1/2 mutations and BCL-2 dependence: an unexpected Chink in AMLs armour[J]. Cancer cell, 2015, 27(3): 323-325. doi: 10.1016/j.ccell.2015.02.013
|
[16] |
MA J, ZHAO S J, QIAO X A, et al. Inhibition of Bcl-2 Synergistically Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia[J]. Clin Cancer Res, 2019, 25(22): 6815-6826. doi: 10.1158/1078-0432.CCR-19-0832
|
[17] |
ZHOU J D, ZHANG T J, XU Z J, et al. BCL-2 overexpression: clinical implication and biological insights in acute myeloid leukemia[J]. Diagnostic Pathology, 2019, 14(1): 68. doi: 10.1186/s13000-019-0841-1
|
[18] |
STONE R M, MANDREKAR S J, SANFORD B L, et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation[J]. N Engl J Med, 2017, 377(5): 454-454. doi: 10.1056/NEJMoa1614359
|
[19] |
CORTES J E, SMITH B D, WANG E S. Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS Phase 2 study results[J]. Npj Precision Oncology, 2018, 93(11): 1301-1310.
|
[20] |
RAVANDI F, ASSI R, DAVER N, et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study[J]. The Lancet Haematology, 2019, 6(9): e480-e488. doi: 10.1016/S2352-3026(19)30114-0
|
[21] |
PETERSDORF S H, KOPECKY K J, SLOVAK M, et al. A phase 3 study of gemtuzumabozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia[J]. Blood, 2013, 121(24): 4854-4860. doi: 10.1182/blood-2013-01-466706
|
[22] |
CHONG C, ROBERTS A W, REYNOLDS J, et al. Chemotherapy and venetoclax in Elderly Acute Myeloid Leukemia Trial (CAVEAT): A Phase Ib Dose-Escalation Study of venetoclax Combined With Modified Intensive Chemotherapy[J]. Journal of Clinical Oncology, 2020, 38(30): 3506-3517. doi: 10.1200/JCO.20.00572
|
[23] |
ZHANG J, GU Y, CHEN B. Mechanisms of drug resistance in acute myeloid leukemia[J]. Onco Targets and therapy, 2019, 12: 1937-1945. doi: 10.2147/OTT.S191621
|