SHEN Xiaoli, ZHUANG Xueming, QIAN Mengshu, MA Weixiong, CHEN Yueyang, LU Chaoming, FANG Xutao, WANG Shibo. MicroRNA-182-5p regulates the MAPK/NF-κB pathway by targeting MAPK1 to treat acute lung injury[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 79-85. DOI: 10.7619/jcmp.20214224
Citation: SHEN Xiaoli, ZHUANG Xueming, QIAN Mengshu, MA Weixiong, CHEN Yueyang, LU Chaoming, FANG Xutao, WANG Shibo. MicroRNA-182-5p regulates the MAPK/NF-κB pathway by targeting MAPK1 to treat acute lung injury[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 79-85. DOI: 10.7619/jcmp.20214224

MicroRNA-182-5p regulates the MAPK/NF-κB pathway by targeting MAPK1 to treat acute lung injury

More Information
  • Received Date: October 26, 2021
  • Available Online: March 24, 2022
  • Published Date: March 14, 2022
  •   Objective  To explore the effect of miR-182-5p on lipopolysaccharide (LPS) induced acute lung injury (ALI) and its molecular mechanism through molecular biological methods.
      Methods  Fluorescence quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-182-5p and MAPK1 in the LPS-induced ALI model. Dual luciferase reporter gene was used to detect the relationship between miR-182-5p and MAPK1. ALI models were treated with Ad-MAPK1, Ad-miR-182-5p and Ad-MAPK1+Ad-miR-182-5p, respectively, and the changes of lung injury index and pulmonary fibrosis were detected by Hematoxylin-eosin staining (HE staining) and Masson staining. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and myeloperoxidase (MPO) in lung tissues of all treatment groups were detected by enzyme-linked immunosorbent assay (ELISA). The expressions of nuclear factor κB(NF-κB) and NF-κB inhibitor protein α (IκBα) were detected by western blot (WB).
      Results  This study showed that the expression level of miR-182-5p gradually increased at 0 to 12 hours after ALI, and then decreased at >12 to 24 hours; the expression level of MAPK1 gradually decreased at 0 to 12 hours and increased at >12 to 24 hours. Further genetic interference of ALI showed that the overexpression of miR-182-5p could significantly down-regulate the lung injury index, lung fibrosis and the levels of pro-inflammatory cytokines, while the overexpression of MAPK1 aggravated the levels of lung injury index, lung fibrosis and pro-inflammatory cytokines. Cell experiments in vitro showed that LPS stimulation significantly increased the protein expression of NF-κB and inhibited the expression of IκBα at the same time. The miR-182-5p was able to inhibit the expression of NF-κB and promote the expression of IκBα; on the contrary, the overexpression of MAPK1 reversed this phenomenon.
      Conclusion  MiR-182-5p plays a therapeutic role in ALI by inhibiting the MAPK/NF-κB signaling pathway, and the data of this study may contribute to an in-depth understanding of the potential molecular mechanism of ALI and the development of new therapeutic methods for ALI.
  • [1]
    查玉杰, 曹丽睿, 罗芩, 等. 人参皂苷Rg1对高原急性缺氧大鼠肺组织损伤的预防作用[J/OL]. 生命科学研究: 1-10. [2021-07-23]. https://doi.org/10.16605/j.cnki.1007-7847.2021.01.0112.
    [2]
    尚罗锐, 刘宇寒, 李金骁, 等. 大承气汤调控Nrf2/TGF-β1/ERK通路来减轻脂多糖诱导的急性肺损伤[J]. 中国医院药学杂志, 2021, 41(19): 1935-1939, 1972. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYZ202119002.htm
    [3]
    GARCÍA-FERNÁNDEZ A, SANCHO M, BISBAL V, et al. Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment[J]. J Control Release, 2021, 337: 14-26. doi: 10.1016/j.jconrel.2021.07.010
    [4]
    黄钟, 孙洁, 姚振滨, 等. TXNIP/NLRP3在脓毒症所致ALI/ARDS患者外周血中的表达[J]. 现代免疫学, 2021, 41(4): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202104008.htm
    [5]
    凌云飞, 李田歌, 曹嵘, 等. 木犀草素对体外循环导致急性肺损伤的保护作用及其机制研究[J/OL]. 中国胸心血管外科临床杂志: 1-8. [2021-07-25]. http://kns.cnki.net/kcms/detail/51.1492.R.20210721.1003.012.html.
    [6]
    张小芳, 唐凤鸣. 藁本内酯对脂多糖诱导的肺上皮细胞损伤的保护作用及其机制[J]. 中国生物制品学杂志, 2021, 34(7): 824-830. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZP202107012.htm
    [7]
    袁静, 从人愿, 夏金婵, 等. STAT3信号通路在急性肺损伤中的研究进展[J/OL]. 中国免疫学杂志: 1-21. [2021-07-25]. http://kns.cnki.net/kcms/detail/22.1126.R.20210716.1244.019.html.
    [8]
    刘曦, 马会旭, 杨华, 等. 高分辨率CT影像学特征预测老年髋部骨折患者早期急性肺损伤的价值[J]. 重庆医科大学学报, 2021, 46(8): 953-957. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYK202108017.htm
    [9]
    陈加宝, 刘华. 2, 3, 5, 4'-四羟基二苯乙烯-2-O-β-D-葡萄糖苷可减轻脂多糖诱导的大鼠急性肺损伤[J]. 南方医科大学学报, 2021, 41(7): 1101-1106.
    [10]
    SUN Q S, LUO M, GAO Z W, et al. Long non-coding RNA OIP5-AS1 aggravates acute lung injury by promoting inflammation and cell apoptosis via regulating the miR-26a-5p/TLR4 axis[J]. BMC Pulm Med, 2021, 21(1): 236. doi: 10.1186/s12890-021-01589-1
    [11]
    XU T, YU Y J, GUO S C, et al. CircPSMC3 suppresses migration and invasion of non-small cell lung cancer cells via miR-182-5p/NME2 axis[J]. Med Sci Monit, 2020, 26: e924134.
    [12]
    CHEN J, LI C H, LIANG Z X, et al. Human mesenchymal stromal cells small extracellular vesicles attenuate Sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway[J]. Cytotherapy, 2021, 23(10): 918-930. doi: 10.1016/j.jcyt.2021.05.009
    [13]
    GARCÍA-FERNÁNDEZ A, SANCHO M, BISBAL V, et al. Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment[J]. J Control Release, 2021, 337: 14-26. doi: 10.1016/j.jconrel.2021.07.010
    [14]
    WANG C, CHEN Y, CHENG N T, et al. microRNA-762 modulates lipopolysaccharide-induced acute lung injury via SIRT7[J]. Immunol Invest, 2021: 2021Jul12; 1-2021Jul1216.
    [15]
    DING Y H, MIAO R X, ZHANG Q. Hypaphorine exerts anti-inflammatory effects in Sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway[J]. Kaohsiung J Med Sci, 2021, 37(10): 883-893. doi: 10.1002/kjm2.12418
    [16]
    CHEN H G, LIN H Y, DONG B B, et al. Hydrogen alleviates cell damage and acute lung injury in Sepsis via PINK1/Parkin-mediated mitophagy[J]. Inflamm Res, 2021, 70(8): 915-930. doi: 10.1007/s00011-021-01481-y
    [17]
    CHEN W X, WANG D D, ZHU B, et al. Exosomal miR-222 from adriamycin-resistant MCF-7 breast cancer cells promote macrophages M2 polarization via PTEN/Akt to induce tumor progression[J]. Aging (Albany NY), 2021, 13(7): 10415-10430.
    [18]
    ZEMSKOV E A, WU X M, AGGARWAL S, et al. Nitration of protein kinase G-Iα modulates cyclic nucleotide crosstalk via phosphodiesterase 3A: implications for acute lung injury[J]. J Biol Chem, 2021, 297(2): 100946. doi: 10.1016/j.jbc.2021.100946
    [19]
    YEH C L, WU J M, SU L H, et al. Intravenous calcitriol administration regulates the renin-angiotensin system and attenuates acute lung injury in obese mice complicated with polymicrobial Sepsis[J]. Biomed Pharmacother, 2021, 141: 111856. doi: 10.1016/j.biopha.2021.111856
    [20]
    SHAIKH S B, NAJAR M A, PRASAD T S K, et al. Comparative protein profiling reveals the inhibitory role of curcumin on IL-17A mediated minichromosome maintenance (MCM) proteins as novel putative markers for acute lung injury in vivo[J]. Biomed Pharmacother, 2021, 141: 111715. doi: 10.1016/j.biopha.2021.111715
    [21]
    宋安华, 黎世贵, 冯星源, 等. 电针经p38 MAPK信号通路对坐骨神经损伤大鼠脊髓中AQP1和AQP4表达的影响[J]. 世界科学技术-中医药现代化, 2021, 23(6): 1944-1950. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202106025.htm
  • Related Articles

    [1]MU Jingli, XU Qingyun, WANG Ruili, YANG Pinni, CHENG Ming, WANG Dan, ZHANG Jin, WANG Yinnan, ZHAO Xingquan, CHANG Liguo, WANG Aili. Effect of overweight on the prognosis of patients with acute mild ischemic stroke or moderate-high risk transient ischemic attack[J]. Journal of Clinical Medicine in Practice, 2024, 28(2): 1-7, 12. DOI: 10.7619/jcmp.20232721
    [2]YIN Yidan, YANG Jianping, SUN Ning, MA Baoying, LIU Xiaoling. Application analysis of intelligent speech follow-up system in secondary prevention of ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2023, 27(22): 1-5. DOI: 10.7619/jcmp.20231413
    [3]WANG Ning, SUN Jun, LIU Yi, FENG Gaojun, LIU Yuanfang, PEI Shuang, YANG Yinxue, ZHANG Zaixing, ZHANG Donghuan, WEN Changming. Changes of thrombomodulin and nitric oxide synthase in patients with acute ischemic stroke and their significance[J]. Journal of Clinical Medicine in Practice, 2023, 27(17): 122-126. DOI: 10.7619/jcmp.20230501
    [4]YOU Jing, HE Miao, ZHOU Feng, LI Weirong. Research progress on roles of blood biomarkers in etiological classification of ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2022, 26(6): 118-122. DOI: 10.7619/jcmp.20214524
    [5]BAO Yingshi, LIU Jianhong, DU Huaping, JIA Xianjun. Value of C-reactive protein combined with neutrophil to lymphocyte ratio in predicting post-stroke depression of patients with ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2021, 25(22): 59-62. DOI: 10.7619/jcmp.20213865
    [6]CAO Qinqin, JIANG Wei, HUA Ye, JIANG Siming, MA Tao. Correlation between premorbid hypertension control and the classification of ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2021, 25(11): 39-42. DOI: 10.7619/jcmp.20211193
    [7]GUO Siping, YANG Lihui, DONG Wanli. Analysis of prognosis-related risk factors in patients with acute ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2021, 25(7): 39-41, 46. DOI: 10.7619/jcmp.20201527
    [8]MENG Hao, YANG Linjun, PU Yan. Effect of positive reduction of blood pressure in acute period on reperfusion of patients with acute ischemic stroke by intravenous thrombolysis[J]. Journal of Clinical Medicine in Practice, 2017, (17): 31-34. DOI: 10.7619/jcmp.201717009
    [9]ZHANG Zuonian, WANG Zhiye, NI Mengyuan, XU Jun. Correlation between the levels of serum proinflammatory cytokines and stability of carotid atherosclerotic plaque in patients with acute ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2016, (9): 6-9. DOI: 10.7619/jcmp.201609002
    [10]DENG Yanmei. Analysis of the relevant factors between hyperhomocysteinemia and ischemic stroke[J]. Journal of Clinical Medicine in Practice, 2013, (14): 79-80,83. DOI: 10.7619/jcmp.201314027
  • Cited by

    Periodical cited type(11)

    1. 何丽. 全方位保温措施在剖宫产手术室护理工作中的应用效果分析. 基层医学论坛. 2025(07): 149-152 .
    2. 程龙,秦远征. 全方位保温措施在剖宫产手术室护理工作中的应用效果. 妇儿健康导刊. 2023(01): 162-164 .
    3. 许卉,李海宁,李海红,高冬梅. 责任护理模式下的综合保温措施对腹腔镜子宫切除术患者围术期体温及凝血功能的影响. 国际护理学杂志. 2022(02): 350-353 .
    4. 梁惠甜,唐方元. 全方位保温措施在剖宫产手术室护理工作中的应用. 黑龙江医药. 2022(05): 1227-1229 .
    5. 查玲玲,张海燕,陈婷,符霞,汤立飞. 术中积极保温护理干预对前置胎盘剖宫产产妇术后手术源性低体温的影响. 中国当代医药. 2021(11): 204-206 .
    6. 张驰英,方继红,范家莉,姚小燕,夏寅,葛青,王华梅. 先天性髋关节脱位患儿术中体温精细化护理效果观察. 安徽医学. 2021(09): 1059-1063 .
    7. 欧阳颖. 手术室保温干预对剖宫产产妇低体温发生及新生儿评分的影响. 基层医学论坛. 2021(27): 3957-3958 .
    8. 王小梅. 术中积极保温对剖宫产术后康复的影响分析. 人人健康. 2020(11): 234+233 .
    9. 赵梦茜. 瘢痕子宫合并前置胎盘产妇剖宫产术中低体温的影响因素分析. 中国妇幼保健. 2020(22): 4221-4223 .
    10. 谭彩霞,覃晓琳,韦敏奎. 术中综合保温措施在妇科腹腔镜手术患者中的应用效果. 微创医学. 2020(05): 696-698 .
    11. 王晓燕. 剖宫产手术过程低体温的影响因素分析及预防措施探. 现代医学与健康研究电子杂志. 2019(14): 99-100 .

    Other cited types(1)

Catalog

    Article views (254) PDF downloads (15) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return