ZHU Qian, SONG Yan, CHEN Jun. Predictive model of gestational diabetes mellitus based on glycated hemoglobin, glycated albumin and fasting blood glucose[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 29-34. DOI: 10.7619/jcmp.20215123
Citation: ZHU Qian, SONG Yan, CHEN Jun. Predictive model of gestational diabetes mellitus based on glycated hemoglobin, glycated albumin and fasting blood glucose[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 29-34. DOI: 10.7619/jcmp.20215123

Predictive model of gestational diabetes mellitus based on glycated hemoglobin, glycated albumin and fasting blood glucose

More Information
  • Received Date: December 25, 2021
  • Available Online: May 09, 2022
  • Published Date: May 14, 2022
  •   Objective  To observe the effect of predictive model of gestational diabetes mellitus (GDM) based on glycated hemoglobin (HbA1c), glycated albumin (GA) and fasting blood glucose (FBG).
      Methods  A total of 3 132 pregnant women who underwent prenatal testing and delivery were selected, and divided into GDM group (n=2 070) and non-GDM group (n=1 062, normal blood glucose). The levels of HbA1c, GA and FBG in the two groups were analyzed in the early and last pregnancy. The GDM prediction model was established by logistic regressive analysis. Receiver operating characteristic (ROC) curve was used to calculate area under the curve (AUC) to evaluate the effect of the model.
      Results  The levels of GA and FBG in the GDM group in the early pregnancy were significantly higher than those in the non-GDM group (P<0.05); there was no significant difference in HbA1c between the two groups (P>0.05). The levels of HbA1c, GA and FBG in the GDM group in the late pregnancy were significantly higher than those in the non-GDM group (P<0.05). The predictive model showed that the GA and FBG in the early pregnancy were the influencing factors for GDM, while the HbA1c, GA and FBG were all influencing factors for GDM in the late pregnancy. The AUC of GA in early pregnancy was higher than that of HbA1c, while it was opposite in late pregnancy. The AUC of combined prediction was higher than that of single indicator detection.
      Conclusion  GDM prediction model has a good effect. The predictive effects of HbA1c, GA and FBG on GDM are different in the early and late stages of pregnancy, these indicators should be used in combination according to different stages of pregnancy in order to provide reference for the diagnosis and treatment of clinical GDM.
  • [1]
    KWON S S, KWON J Y, PARK Y W, et al. HbA1c for diagnosis and prognosis of gestational diabetes mellitus[J]. Diabetes Res Clin Pract, 2015, 110(1): 38-43. doi: 10.1016/j.diabres.2015.07.014
    [2]
    HOSSEINI E, JANGHORBANI M, SHAHSHAHAN Z. Comparison of risk factors and pregnancy outcomes of gestational diabetes mellitus diagnosed during early and late pregnancy[J]. Midwifery, 2018, 66: 64-69. doi: 10.1016/j.midw.2018.07.017
    [3]
    ZHU W W, YANG H X, WEI Y M, et al. Comparing the diagnostic criteria for gestational diabetes mellitus of World Health Organization 2013 with 1999 in Chinese population[J]. Chin Med J (Engl), 2015, 128(1): 125-127. doi: 10.4103/0366-6999.147858
    [4]
    楼公先, 楼时先, 程秒鸳, 等. 孕早期FBG、HbA1c、TC、TG联合检测在妊娠期糖尿病诊断中的应用价值分析[J]. 中华全科医学, 2019, 17(5): 809-812. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201905029.htm
    [5]
    UNNIKRISHNAN R, MOHAN V. Challenges in estimation of glycated hemoglobin in India[J]. Diabetes Technol Ther, 2013, 15(10): 897-899. doi: 10.1089/dia.2013.0144
    [6]
    METZGER B E, GABBE S G, PERSSON B, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy[J]. Diabetes Care, 2010, 33(7): e98. doi: 10.2337/dc10-0719
    [7]
    MUCHE A A, OLAYEMI O O, GETE Y K. Gestational diabetes mellitus increased the risk of adverse neonatal outcomes: a prospective cohort study in Northwest Ethiopia[J]. Midwifery, 2020, 87: 102713. doi: 10.1016/j.midw.2020.102713
    [8]
    侯益轩, 吴丽萍, 刘燕萍. 糖化白蛋白在妊娠期糖尿病监测中的研究进展[J]. 协和医学杂志, 2019, 10(6): 660-665. doi: 10.3969/j.issn.1674-9081.2019.06.019
    [9]
    朱晓琴, 岳虹霓. 糖化血红蛋白水平与妊娠期糖尿病患者并发症及妊娠结局的相关性研究[J]. 中国妇幼保健, 2017, 32(14): 3173-3175. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB201714028.htm
    [10]
    金玥雯, 岳朝艳, 应春妹. 糖化血红蛋白及糖化白蛋白在高龄孕妇妊娠期糖尿病中的应用价值[J]. 检验医学, 2018, 33(4): 312-315. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYY201804011.htm
    [11]
    LIU X Y, WU N, AL-MUREISH A. A review on research progress in the application of glycosylated hemoglobin and glycated albumin in the screening and monitoring of gestational diabetes[J]. Int J Gen Med, 2021, 14: 1155-1165. doi: 10.2147/IJGM.S296316
    [12]
    蔡慧华, 何援利, 王雪峰, 等. 糖化血红蛋白联合空腹血糖检测在妊娠期糖尿病筛查中的应用价值[J]. 实用妇产科杂志, 2014, 30(3): 205-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SFCZ201403019.htm
    [13]
    王亚虹, 胡德宇, 朱晨琛, 等. 妊娠期糖尿病孕妇糖化血红蛋白和糖化血清蛋白与新生儿出生体质量的关系研究[J]. 检验医学与临床, 2019, 16(12): 1672-1674. doi: 10.3969/j.issn.1672-9455.2019.12.013
    [14]
    王冰, 王玉明, 段勇. 糖化血清白蛋白分子特性及临床意义[J]. 实验与检验医学, 2015, 33(6): 693-696. doi: 10.3969/j.issn.1674-1129.2015.06.001
    [15]
    ZENG Y P, HE H, ZHOU J, et al. The association and discordance between glycated hemoglobin A1c and glycated albumin, assessed using a blend of multiple linear regression and random forest regression[J]. Clin Chim Acta, 2020, 506: 44-49. doi: 10.1016/j.cca.2020.03.019
    [16]
    沈磊芬, 施卫琴, 蔡丽文. 孕早期FBG、HbA1c及孕前BMI对妊娠期糖尿病的联合诊断价值[J]. 中国妇幼健康研究, 2021, 32(2): 205-208. doi: 10.3969/j.issn.1673-5293.2021.02.007
    [17]
    朱丹婴, 姜缨. 妊娠早期糖脂代谢指标检测预测妊娠期糖尿病发病及母婴结局的价值[J]. 中国妇幼保健, 2018, 33(2): 310-312. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB201802023.htm
    [18]
    张淳义, 倪颖华, 季鑫, 等. 妊娠期糖尿病患者糖化血红蛋白和糖化白蛋白水平与新生儿体重的相关性[J]. 检验医学, 2017, 32(3): 165-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYY201703003.htm
    [19]
    PAN J M, ZHANG F, ZHANG L, et al. Influence of insulin sensitivity and secretion on glycated albumin and hemoglobin A1c in pregnant women with gestational diabetes mellitus[J]. Int J Gynecol Obstet, 2013, 121(3): 252-256. doi: 10.1016/j.ijgo.2013.01.017
    [20]
    HIRAMATSU Y, SHIMIZU I, OMORI Y, et al. Determination of reference intervals of glycated albumin and hemoglobin A1c in healthy pregnant Japanese women and analysis of their time courses and influencing factors during pregnancy[J]. Endocr J, 2012, 59(2): 145-151. doi: 10.1507/endocrj.K10E-410
    [21]
    NGIAM K Y, LEE W J, LEE Y C, et al. Efficacy of metabolic surgery on HbA1c decrease in type 2 diabetes mellitus patients with BMI[J]. Obes Surg, 2014, 24(1): 148-158. doi: 10.1007/s11695-013-1112-y
    [22]
    BOE B, BARBOUR L A, ALLSHOUSE A A, et al. Universal early pregnancy glycosylated hemoglobin A1c as an adjunct to Carpenter-Coustan screening: an observational cohort study[J]. Am J Obstet Gynecol MFM, 2019, 1(1): 24-32. doi: 10.1016/j.ajogmf.2019.02.003
    [23]
    魏鸿, 贺丹, 许航. 年龄、孕前体重指数、孕早期空腹血糖和糖化血红蛋白在妊娠期糖尿病预测中的价值[J]. 实用医院临床杂志, 2021, 18(6): 110-114. doi: 10.3969/j.issn.1672-6170.2021.06.031
    [24]
    HIPPISLEY-COX J, COUPLAND C. Development and validation of risk prediction equations to estimate future risk of heart failure in patients with diabetes: a prospective cohort study[J]. BMJ Open, 2015, 5(9): e008503. doi: 10.1136/bmjopen-2015-008503
    [25]
    胡晓琪, 翟巾帼, 李静, 等. 基于多维度指标的妊娠期糖尿病风险预测模型的构建与验证[J]. 实用医学杂志, 2021, 37(9): 1141-1144, 1149. doi: 10.3969/j.issn.1006-5725.2021.09.009
  • Related Articles

    [1]PANG Ting, WU Weili, YANG Binjiao. Pathogen status, risk factors and prediction model construction for catheter-related infection in patients with maintenance hemodialysis[J]. Journal of Clinical Medicine in Practice, 2024, 28(21): 60-65. DOI: 10.7619/jcmp.20243000
    [2]ZHU Huayuan, ZHANG Yajuan, SUN Qian, HUANG Yan, YANG Bingyin. Establishment of a Nomogram prediction model for chronic constipation patients based on body position exercise training[J]. Journal of Clinical Medicine in Practice, 2024, 28(17): 109-113. DOI: 10.7619/jcmp.20241488
    [3]ZHANG Nianfang, WEI Cui, ZHAO Xuepiao. Construction of risk prediction model of gestational diabetes mellitus patients complicated with gestational hypertension[J]. Journal of Clinical Medicine in Practice, 2024, 28(15): 64-69, 75. DOI: 10.7619/jcmp.20234003
    [4]TANG Ling, WANG Wei, HAO Qiyan, WANG Jingjing. Influencing factors and construction of risk prediction model of malnutrition in patients with gastric cancer undergoing chemotherapy[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 79-84. DOI: 10.7619/jcmp.20231795
    [5]REN Yuanyuan, DING Fu, XU Zhihui, FU Rongjuan. Research status of fall risk prediction models for inpatients[J]. Journal of Clinical Medicine in Practice, 2023, 27(8): 144-148. DOI: 10.7619/jcmp.20230036
    [6]SHAO Chao, GAO Wencan, ZHANG Jun, SHEN Bin, XU Jianwei, YIN Kai. Establishment of prediction model of deep venous thrombosis formation of lower extremity after general surgery[J]. Journal of Clinical Medicine in Practice, 2022, 26(22): 12-15, 19. DOI: 10.7619/jcmp.20221634
    [7]XU Chaoying, FANG Yue, WU Tingting, CHEN Lihui, YANG Qian, WANG Yuehong. Construction and validation of a predictive model for risk of hypoglycemia in neonates delivered by pregnant women with normal glucose tolerance based on Logistic regression analysis[J]. Journal of Clinical Medicine in Practice, 2022, 26(17): 111-115. DOI: 10.7619/jcmp.20221440
    [8]DONG Yanping, WANG Jiemin, WANG Yujin, REN Yali, DONG Yucheng, YONG Yanjun, SU Xuandi, WANG Jixiang, SU Nan, WANG Fuli, XIA Duosheng. Construction and evaluation of Nomogram prediction model for postoperative recurrence of pterygium[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 52-56. DOI: 10.7619/jcmp.20214610
    [9]LU Xiangyue, WANG Yannian, LI Quanzhong. Analysis in performance of GM(1, 1) model in predicting blood glucose at different ranges[J]. Journal of Clinical Medicine in Practice, 2021, 25(9): 23-28, 36. DOI: 10.7619/jcmp.20210757
    [10]GONG Yi, YAN Xiaohong. Effect of pioglitazone on fasting blood glucose, postprandial 2 h blood sugar and glycated hemoglobintype in patients with type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2018, (5): 32-35. DOI: 10.7619/jcmp.201805010
  • Cited by

    Periodical cited type(19)

    1. 匡梦华,卢聪,匡梦娇. 孕早期基于多因素回归分析构建妊娠期糖尿病预测模型及验证. 现代检验医学杂志. 2024(01): 158-161+204 .
    2. 方亚军,夏晓莉,姚玉叶,朱晓萍. 妊娠期糖尿病孕妇孕晚期糖化血红蛋白水平与BMI增长、不良妊娠结局的关系分析. 当代护士(中旬刊). 2024(03): 83-85 .
    3. 金苑卿. 空腹血糖、糖化白蛋白、糖化血红蛋白在糖尿病监测中的意义. 航空航天医学杂志. 2024(05): 554-557 .
    4. 宋倩,王雪怡. 妊娠糖尿病血糖监测技术及影响因素的研究进展. 妇儿健康导刊. 2024(15): 17-21 .
    5. 邵俊峰. 妊娠期糖尿病诊断中糖化血红蛋白与糖耐量联合检测的应用效果. 糖尿病新世界. 2024(12): 38-41 .
    6. 王利英,杜苏静,朱梦梦. 血清糖化白蛋白和糖化血红蛋白的关系及其对妊娠糖尿病的诊断价值分析. 中国医学工程. 2024(10): 115-118 .
    7. 张晖. 妊娠早期进行糖脂代谢指标及凝血功能指标检测对妊娠期糖尿病的预测价值. 中国实用医药. 2024(23): 20-25 .
    8. 袁若愚,苏建友,袁杰,徐鑫鑫,保方. 空腹血糖、糖化血红蛋白、血清甘油三酯生化检验在诊断妊娠期糖尿病中的价值. 糖尿病新世界. 2024(21): 38-41 .
    9. 严红艳,夏雪梅,叶夏斌. 妊娠早期血清胎盘亮氨酸氨基肽酶和摄食抑制因子水平对妊娠期糖尿病的预测价值. 中国妇幼保健. 2023(03): 389-393 .
    10. 丁玲玲,黄慧娟,方芳. 基于关键节点控制的综合干预模式对妊娠期糖尿病患者血糖控制情况和依从性的影响. 中国妇幼保健. 2023(10): 1776-1779 .
    11. 盛金叶,牛杨,茅晓蒙,李继,冯一,熊瑛,汤庆娅. 备孕期BMI和孕早期增重对妊娠期糖尿病发生风险的预测价值研究. 中国妇幼健康研究. 2023(05): 48-52 .
    12. 梁荣坤,赖东莲,钟羽彤,沈昊. 血清HbA1c、GSP、FPG、TC、TG及CRP联合检测在早期妊娠糖尿病诊断中应用研究. 糖尿病新世界. 2023(03): 64-67 .
    13. 岳俊珂. 血清糖化白蛋白、糖化血红蛋白、空腹血糖对妊娠期糖尿病孕妇的筛选价值分析. 糖尿病新世界. 2023(05): 51-53+58 .
    14. 陈曦妍,罗立权,付宽. 孕早期与孕中期糖化血红蛋白检测在妊娠期糖尿病中的应用价值. 中国医药指南. 2023(27): 105-108 .
    15. 厉英,李营营. 空腹血糖联合糖化血红蛋白对妊娠期糖尿病筛查的价值探讨. 黑龙江医药. 2023(05): 1168-1171 .
    16. 姚石云,余笑笑. 空腹血糖联合糖化血红蛋白检测在妊娠期糖尿病诊断中的临床价值. 实用妇科内分泌电子杂志. 2023(28): 115-117 .
    17. 赵红玲,赵祥涛,冯珍珍. 糖化血红蛋白、空腹血糖检验应用于糖尿病患者的临床意义评估. 糖尿病新世界. 2023(24): 34-37 .
    18. 李虹,王雯智,折开娥,吴桂清,沈鑫. 孕早期母体血清腐胺水平预测妊娠期糖尿病的临床价值. 广西医科大学学报. 2022(12): 1993-2000 .
    19. 张玲凤. 糖化血红蛋白联合空腹血糖检测在妊娠期糖尿病中的应用及准确性分析. 实用妇科内分泌电子杂志. 2022(32): 94-96 .

    Other cited types(3)

Catalog

    Article views (241) PDF downloads (27) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return