Citation: | YANG Yanni, ZHAO Ziwei, LI Xinhua. Research progress of mitogen activated protein kinase signaling pathway in pathogenesis of psoriasis vulgaris[J]. Journal of Clinical Medicine in Practice, 2022, 26(18): 136-139. DOI: 10.7619/jcmp.20220406 |
Main histopathological features of psoriasis vulgaris are epidermal proliferation, dermal inflammatory cell infiltration, neovascularization and the formation of Munro's microabscesses, and its mechanism is closely related to the related signal pathways. Abnormal expression of upstream signal molecules such as miRNA and cytokines of mitogen activated protein kinase (MAPK) signal pathway leads to abnormal activation of downstream signal molecules, which plays an important role in the pathogenesis of psoriasis, and is expected to become a new intervention target. The article reviewed the research progress of MAPK signaling pathway in the pathogenesis of psoriasis vulgaris, so as to provide reference for drug development and precision treatment.
[1] |
MICHALEK I M, LORING B, JOHN S M. A systematic review of worldwide epidemiology of psoriasis[J]. J Eur Acad Dermatol Venereol, 2017, 31(2): 205-212. doi: 10.1111/jdv.13854
|
[2] |
KIMBALL A B, JACOBSON C, WEISS S, et al. The psychosocial burden of psoriasis[J]. Am J Clin Dermatol, 2005, 6(6): 383-392. doi: 10.2165/00128071-200506060-00005
|
[3] |
BOEHNCKE W H, SCHÖN M P. Psoriasis[J]. Lancet, 2015, 386(9997): 983-994. doi: 10.1016/S0140-6736(14)61909-7
|
[4] |
KYRIAKIS J M, AVRUCH J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update[J]. Physiol Rev, 2012, 92(2): 689-737. doi: 10.1152/physrev.00028.2011
|
[5] |
YUE J C, LÓPEZ J M. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21(7): 2346. doi: 10.3390/ijms21072346
|
[6] |
葛新红, 秦璟, 张晓鸣, 等. 细胞外信号调节激酶在寻常性银屑病皮损中的表达[J]. 中华皮肤科杂志, 2010, 43(12): 855-858.
|
[7] |
TAKAHASHI H, IBE M, NAKAMURA S, et al. Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis[J]. J Dermatol Sci, 2002, 30(2): 94-99. doi: 10.1016/S0923-1811(02)00064-6
|
[8] |
FUNDING A T, JOHANSEN C, KRAGBALLE K, et al. Mitogen- and stress-activated protein kinase 2 and cyclic AMP response element binding protein are activated in lesional psoriatic epidermis[J]. J Invest Dermatol, 2007, 127(8): 2012-2019. doi: 10.1038/sj.jid.5700821
|
[9] |
LIU A M, ZHANG B X, ZHAO W, et al. microRNA-215-5p inhibits the proliferation of keratinocytes and alleviates psoriasis-like inflammation by negatively regulating DYRK1A and its downstream signalling pathways[J]. Exp Dermatol, 2021, 30(7): 932-942. doi: 10.1111/exd.14188
|
[10] |
RONGNA R N, YU P, HAO S Y, et al. miR-876-5p suppresses cell proliferation by targeting Angiopoietin-1 in the psoriasis[J]. Biomedecine Pharmacother, 2018, 103: 1163-1169. doi: 10.1016/j.biopha.2018.04.145
|
[11] |
DUAN Q Q, WANG G R, WANG M, et al. LncRNA RP6-65G23. 1 accelerates proliferation and inhibits apoptosis via p-ERK1/2/p-AKT signaling pathway on keratinocytes[J]. J Cell Biochem, 2020, 121(11): 4580-4589. doi: 10.1002/jcb.29685
|
[12] |
WANG H, LEI L, HU J S, et al. Oncostatin M upregulates Livin to promote keratinocyte proliferation and survival via ERK and STAT3 signalling pathways[J]. Exp Physiol, 2020, 105(7): 1151-1158. doi: 10.1113/EP088584
|
[13] |
WU Y, LIU L, BIAN C X, et al. microRNA let-7b inhibits keratinocyte differentiation by targeting IL-6 mediated ERK signaling in psoriasis[J]. Cell Commun Signal, 2018, 16(1): 58. doi: 10.1186/s12964-018-0271-9
|
[14] |
JANG S, JANG S, KIM S Y, et al. Overexpression of Lin28a aggravates psoriasis-like phenotype by regulating the proliferation and differentiation of keratinocytes[J]. J Inflamm Res, 2021, 14: 4299-4312. doi: 10.2147/JIR.S312963
|
[15] |
YANG J X, SUN L G, HAN J, et al. DUSP1/MKP-1 regulates proliferation and apoptosis in keratinocytes through the ERK/Elk-1/Egr-1 signaling pathway[J]. Life Sci, 2019, 223: 47-53. doi: 10.1016/j.lfs.2019.03.018
|
[16] |
MENG J, CHEN F R, YAN W J, et al. miR-15a-5p targets FOSL1 to inhibit proliferation and promote apoptosis of keratinocytes via MAPK/ERK pathway[J]. J Tissue Viability, 2021, 30(4): 544-551. doi: 10.1016/j.jtv.2021.08.006
|
[17] |
NOVOSZEL P, HOLCMANN M, STULNIG G, et al. Psoriatic skin inflammation is promoted by c-Jun/AP-1-dependent CCL2 and IL-23 expression in dendritic cells[J]. EMBO Mol Med, 2021, 13(4): e12409.
|
[18] |
HOLLENHORST P C, MCINTOSH L P, GRAVES B J. Genomic and biochemical insights into the specificity of ETS transcription factors[J]. Annu Rev Biochem, 2011, 80: 437-471. doi: 10.1146/annurev.biochem.79.081507.103945
|
[19] |
LOPEZ-BERGAMI P, LAU E, RONAI Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer[J]. Nat Rev Cancer, 2010, 10(1): 65-76. doi: 10.1038/nrc2681
|
[20] |
LAVOIE H, GAGNON J, THERRIEN M. ERK signalling: a master regulator of cell behaviour, life and fate[J]. Nat Rev Mol Cell Biol, 2020, 21(10): 607-632. doi: 10.1038/s41580-020-0255-7
|
[21] |
WANG Y, YU X J, WANG L H, et al. miR-320b is down-regulated in psoriasis and modulates keratinocyte proliferation by targeting AKT3[J]. Inflammation, 2018, 41(6): 2160-2170. doi: 10.1007/s10753-018-0859-7
|
[22] |
LIANG J Y, CHEN P J, LI C X, et al. IL-22 down-regulates Cx43 expression and decreases gap junctional intercellular communication by activating the JNK pathway in psoriasis[J]. J Invest Dermatol, 2019, 139(2): 400-411. doi: 10.1016/j.jid.2018.07.032
|
[23] |
RIZALDY D, TORIYAMA M, KATO H, et al. Increase in primary Cilia in the epidermis of patients with atopic dermatitis and psoriasis[J]. Exp Dermatol, 2021, 30(6): 792-803. doi: 10.1111/exd.14285
|
[24] |
JIANG M, LI B, ZHANG J Y, et al. Vascular endothelial growth factor driving aberrant keratin expression pattern contributes to the pathogenesis of psoriasis[J]. Exp Cell Res, 2017, 360(2): 310-319. doi: 10.1016/j.yexcr.2017.09.021
|
[25] |
ZHUANG L, MA W Y, YAN J J, et al. Evaluation of the effects of IL-22 on the proliferation and differentiation of keratinocytes in vitro[J]. Mol Med Rep, 2020, 22(4): 2715-2722.
|
[26] |
CHEN H L, LO C H, HUANG C C, et al. Galectin-7 downregulation in lesional keratinocytes contributes to enhanced IL-17A signaling and skin pathology in psoriasis[J]. J Clin Invest, 2021, 131(1): 130740. doi: 10.1172/JCI130740
|
[27] |
LI H D, LI H C, HUO R F, et al. Cyr61/CCN1 induces CCL20 production by keratinocyte via activating p38 and JNK/AP-1 pathway in psoriasis[J]. J Dermatol Sci, 2017, 88(1): 46-56. doi: 10.1016/j.jdermsci.2017.05.018
|
[28] |
LIU S C, WU F, WU Z Z, et al. IL-17A synergistically enhances TLR3-mediated IL-36γ production by keratinocytes: a potential role in injury-amplified psoriatic inflammation[J]. Exp Dermatol, 2019, 28(3): 233-239. doi: 10.1111/exd.13871
|
[29] |
BERTELSEN T, IVERSEN L, JOHANSEN C. I-kappa-B-Zeta regulates interleukin-17A/tumor necrosis factor-alpha mediated synergistic induction of interleukin-19 and interleukin-20 in humane keratinocytes[J]. Ann Dermatol, 2021, 33(2): 122-130. doi: 10.5021/ad.2021.33.2.122
|
[30] |
BERTELSEN T, LJUNGBERG C, BOYE KJELLERUP R, et al. IL-17F regulates psoriasis-associated genes through IκBζ[J]. Exp Dermatol, 2017, 26(3): 234-241. doi: 10.1111/exd.13182
|
[31] |
BERTELSEN T, IVERSEN L, JOHANSEN C. The human IL-17A/F heterodimer regulates psoriasis-associated genes through IκBζ[J]. Exp Dermatol, 2018, 27(9): 1048-1052. doi: 10.1111/exd.13722
|
[32] |
ZHENG T T, ZHAO W H, LI H J, et al. p38α signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation[J]. Sci Signal, 2018, 11(521): eaao1685. doi: 10.1126/scisignal.aao1685
|
[33] |
SEGAWA R, SHIGEEDA K, HATAYAMA T, et al. EGFR transactivation is involved in TNF-α-induced expression of thymic stromal lymphopoietin in human keratinocyte cell line[J]. J Dermatol Sci, 2018, 89(3): 290-298. doi: 10.1016/j.jdermsci.2017.12.008
|
[34] |
JIANG Y Y, WANG W M, ZHENG X F, et al. Immune regulation of TNFAIP3 in psoriasis through its association with Th1 and Th17 cell differentiation and p38 activation[J]. J Immunol Res, 2020, 2020: 5980190.
|
[35] |
JIANG M, FANG H, SHAO S, et al. Keratinocyte exosomes activate neutrophils and enhance skin inflammation in psoriasis[J]. FASEB J, 2019, 33(12): 13241-13253. doi: 10.1096/fj.201900642R
|
[36] |
LEI H, LI X Y, JING B, et al. Human S100A7 induces mature Interleukin1α expression by RAGE-p38 MAPK-Calpain1 pathway in psoriasis[J]. PLoS One, 2017, 12(1): e0169788. doi: 10.1371/journal.pone.0169788
|
[37] |
SUN Y, ZHANG J, ZHAI T H, et al. CCN1 promotes IL-1β production in keratinocytes by activating p38 MAPK signaling in psoriasis[J]. Sci Rep, 2017, 7: 43310. doi: 10.1038/srep43310
|
[38] |
CHUA R A, ARBISER J L. The role of angiogenesis in the pathogenesis of psoriasis[J]. Autoimmunity, 2009, 42(7): 574-579. doi: 10.1080/08916930903002461
|
[39] |
XUE Y D, LIU Y Y, BIAN X H, et al. miR-205-5p inhibits psoriasis-associated proliferation and angiogenesis: Wnt/β-catenin and mitogen-activated protein kinase signaling pathway are involved[J]. J Dermatol, 2020, 47(8): 882-892. doi: 10.1111/1346-8138.15370
|
[40] |
WU P R, MA G, ZHU X J, et al. Cyr61/CCN1 is involved in the pathogenesis of psoriasis vulgaris via promoting IL-8 production by keratinocytes in a JNK/NF-κB pathway[J]. Clin Immunol, 2017, 174: 53-62. doi: 10.1016/j.clim.2016.11.003
|
[41] |
SHI Z R, TAN G Z, CAO C X, et al. Decrease of galectin-3 in keratinocytes: a potential diagnostic marker and a critical contributor to the pathogenesis of psoriasis[J]. J Autoimmun, 2018, 89: 30-40. doi: 10.1016/j.jaut.2017.11.002
|
[42] |
SENRA L, MYLONAS A, KAVANAGH R D, et al. IL-17E (IL-25) enhances innate immune responses during skin inflammation[J]. J Invest Dermatol, 2019, 139(8): 1732-1742, e17. doi: 10.1016/j.jid.2019.01.021
|
[43] |
HUANG X L, YU P X, LIU M Y, et al. ERK inhibitor JSI287 alleviates imiquimod-induced mice skin lesions by ERK/IL-17 signaling pathway[J]. Int Immunopharmacol, 2019, 66: 236-241. doi: 10.1016/j.intimp.2018.11.031
|
[44] |
HALLER V, NAHIDINO P, FORSTER M, et al. An updated patent review of p38 MAP kinase inhibitors (2014-2019)[J]. Expert Opin Ther Pat, 2020, 30(6): 453-466. doi: 10.1080/13543776.2020.1749263
|