LI Yishuai, WANG Yuan, ZAHNG Lei, ZHU Longyu, QIN Xuebo, DUAN Xiaoliang, WANG Min, LI Jianhang. Expression, prognosis and immune characteristics of zinc finger CCCH domain-containing protein 12D in lung adenocarcinoma[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 84-92. DOI: 10.7619/jcmp.20220408
Citation: LI Yishuai, WANG Yuan, ZAHNG Lei, ZHU Longyu, QIN Xuebo, DUAN Xiaoliang, WANG Min, LI Jianhang. Expression, prognosis and immune characteristics of zinc finger CCCH domain-containing protein 12D in lung adenocarcinoma[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 84-92. DOI: 10.7619/jcmp.20220408

Expression, prognosis and immune characteristics of zinc finger CCCH domain-containing protein 12D in lung adenocarcinoma

More Information
  • Received Date: February 09, 2022
  • Available Online: July 01, 2022
  • Objective 

    To analyze the expression and prognostic value of zinc finger CCCH domain-containing protein 12D (ZC3H12D) in lung adenocarcinoma and explore the relationship of ZC3H12D expression with tumor immune cell infiltration.

    Methods 

    The expression of ZC3H12D in lung adenocarcinoma was retrieved from The Cancer Genome Atlas (TCGA) database, and the relationship between clinicopathological features and expression of ZC3H12D was discussed; the Kaplan-Meier method and univariate and multivariate regression analyses based on overall survival (OS) were used to assess the prognostic value of ZC3H12D in lung adenocarcinoma; the ZC3H12D-related protein-protein interaction network and signaling pathway were analyzed by using the GeneMANIA database; TIMER, TISIDB database and ssGSEA method were used to analyze the correlation between ZC3H12D expression and the level of immune cell infiltration in lung adenocarcinoma.

    Results 

    The expression of ZC3H12D in lung adenocarcinoma was significantly higher than that in adjacent normal tissues, and was significantly correlated with the clinicopathological features of patients with lung adenocarcinoma (P < 0.05), which indicated that high expression was more likely to predict poor prognosis. Protein-protein interaction network analysis revealed that ZC2H12A, ZC2H12B, N4BP1, ZC2H12C, KHNYN, RPGRIP1L, NYNRIN, OR2V2, GPR75, ZNF488, FCER2, ZNF280B, GRAP, P2RX5, SLAMF6, CD80, TCF7, AICDA, PARP15 and TUBB1 had significant interactions with ZC3H12D, and were mainly related to immune cell signaling pathways. The expression of ZC3H12D was positively correlated with tumor infiltrating immune cells (P < 0.05).

    Conclusion 

    ZC3H12D is an independent prognostic indicator with high expression in lung adenocarcinoma, which can affect the level of immune cell infiltration, and it may be used as a potential biomarker for diagnosis and prognosis of lung adenocarcinoma.

  • [1]
    SCHNEIDER B J, ISMAILA N, AERTS J, et al. Lung cancer surveillance after definitive curative-intent therapy: ASCO guideline[J]. J Clin Oncol, 2020, 38(7): 753-766. doi: 10.1200/JCO.19.02748
    [2]
    BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [3]
    LI Z Q, DING B, XU J X, et al. Relevance of STK11 mutations regarding immune cell infiltration, drug sensitivity, and cellular processes in lung adenocarcinoma[J]. Front Oncol, 2020, 10: 580027. doi: 10.3389/fonc.2020.580027
    [4]
    PEREZ-RUIZ E, MINUTE L, OTANO I, et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy[J]. Nature, 2019, 569(7756): 428-432. doi: 10.1038/s41586-019-1162-y
    [5]
    CHEN W H, GUO Z F, WU J Y, et al. Identification of a ZC3H12D-regulated competing endogenous RNA network for prognosis of lung adenocarcinoma at single-cell level[J]. BMC Cancer, 2022, 22(1): 115. doi: 10.1186/s12885-021-08992-1
    [6]
    LIANG J, WANG J, AZFER A, et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages[J]. J Biol Chem, 2008, 283(10): 6337-6346. doi: 10.1074/jbc.M707861200
    [7]
    ZHANG J, WEN X, LIU N, et al. Correction to: Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and tumorigenicity in nasopharyngeal carcinoma by inhibiting cell cycle arrest[J]. J Exp Clin Cancer Res, 2021, 40(1): 394. doi: 10.1186/s13046-021-02205-0
    [8]
    HUANG C, WU S R, LI W F, et al. Zinc-finger protein p52-ZER6 accelerates colorectal cancer cell proliferation and tumour progression through promoting p53 ubiquitination[J]. EBioMedicine, 2019, 48: 248-263. doi: 10.1016/j.ebiom.2019.08.070
    [9]
    WARDE-FARLEY D, DONALDSON S L, COMES O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W214-W220.
    [10]
    LI T W, FAN J Y, WANG B B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110. doi: 10.1158/0008-5472.CAN-17-0307
    [11]
    RU B B, WONG C N, TONG Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions[J]. Bioinformatics, 2019, 35(20): 4200-4202. doi: 10.1093/bioinformatics/btz210
    [12]
    TORRE L A, SIEGEL R L, JEMAL A. Lung cancer statistics[J]. Adv Exp Med Biol, 2016, 893: 1-19.
    [13]
    WAWRO M, KOCHAN J, KRZANIK S, et al. Intact NYN/PIN-like domain is crucial for the degradation of inflammation-related transcripts by ZC3H12D[J]. J Cell Biochem, 2017, 118(3): 487-498. doi: 10.1002/jcb.25665
    [14]
    HOEFIG K P, REIM A, GALLUS C, et al. Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation[J]. Nat Commun, 2021, 12(1): 5208. doi: 10.1038/s41467-021-25345-5
    [15]
    WAKAHASHI S, KAWAKAMI F, WAKAHASHI K, et al. Transformed follicular lymphoma (TFL) predicts outcome in advanced endometrial cancer[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(8): 963-969. doi: 10.1158/1055-9965.EPI-17-0762
    [16]
    VICKERS A J, VAN CALSTER B, STEYERBERG E. Decision curves, calibration, and subgroups[J]. J Clin Oncol, 2017, 35(4): 472-473. doi: 10.1200/JCO.2016.69.1576
    [17]
    CAO R Y, WU Q Q, LI Q L, et al. A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma[J]. PeerJ, 2019, 7: e7360. doi: 10.7717/peerj.7360
    [18]
    CAMIDGE D R, DOEBELE R C, KERR K M. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC[J]. Nat Rev Clin Oncol, 2019, 16(6): 341-355. doi: 10.1038/s41571-019-0173-9
    [19]
    ALTORKI N K, MARKOWITZ G J, GAO D C, et al. The lung microenvironment: an important regulator of tumour growth and metastasis[J]. Nat Rev Cancer, 2019, 19(1): 9-31. doi: 10.1038/s41568-018-0081-9
    [20]
    CHEN Y, CHEN D D, WANG Q, et al. Immunological classification of pancreatic carcinomas to identify immune index and provide a strategy for patient stratification[J]. Front Immunol, 2021, 12: 719105.
    [21]
    EMMING S, BIANCHI N, POLLETTI S, et al. A molecular network regulating the proinflammatory phenotype of human memory T lymphocytes[J]. Nat Immunol, 2020, 21(4): 388-399. doi: 10.1038/s41590-020-0622-8
    [22]
    STANKOVIC B, BJØRHOVDE H A K, SKARSHAUG R, et al. Immune cell composition in human non-small cell lung cancer[J]. Front Immunol, 2018, 9: 3101.
    [23]
    LIU F T, WU H Y. CC chemokine receptors in lung adenocarcinoma: the inflammation-related prognostic biomarkers and immunotherapeutic targets[J]. J Inflamm Res, 2021, 14: 267-285. doi: 10.2147/JIR.S278395
    [24]
    WCULEK S K, CUETO F J, MUJAL A M, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020, 20(1): 7-24. doi: 10.1038/s41577-019-0210-z
    [25]
    ZHANG J, ENDRES S, KOBOLD S. Enhancing tumor T cell infiltration to enable cancer immunotherapy[J]. Immunotherapy, 2019, 11(3): 201-213. doi: 10.2217/imt-2018-0111
    [26]
    KHARYTANIUK N, COWLEY P, WERRING D J, et al. Case report: auditory neuropathy and central auditory processing deficits in a neuro-otological case-study of infratentorial superficial siderosis[J]. Front Neurol, 2020, 11: 610819.
    [27]
    EDLUND K, MADJAR K, MATTSSON J S M, et al. Prognostic impact of tumor cell programmed death ligand 1 expression and immune cell infiltration in NSCLC[J]. J Thorac Oncol, 2019, 14(4): 628-640. doi: 10.1016/j.jtho.2018.12.022
    [28]
    SHINCHI Y, KOMOHARA Y, YONEMITSU K, et al. Accurate expression of PD-L1/L2 in lung adenocarcinoma cells: a retrospective study by double immunohistochemistry[J]. Cancer Sci, 2019, 110(9): 2711-2721. doi: 10.1111/cas.14128
    [29]
    BERCOVICI N, GUÉRIN M V, TRAUTMANN A, et al. The remarkable plasticity of macrophages: a chance to fight cancer[J]. Front Immunol, 2019, 10: 1563. doi: 10.3389/fimmu.2019.01563
    [30]
    DAVIES S I, BARRETT J, WONG S, et al. Robust production of merkel cell Polyomavirus oncogene specific T cells from healthy donors for adoptive transfer[J]. Front Immunol, 2020, 11: 592721. doi: 10.3389/fimmu.2020.592721
  • Related Articles

    [1]LI Jinpei, WANG Yonghuai, LI Guangyuan, MA Chunyan, YANG Jun. Research progress on risk factors of coronary slow flow[J]. Journal of Clinical Medicine in Practice, 2022, 26(12): 115-118. DOI: 10.7619/jcmp.20220353
    [2]CHEN Haiyan, FU Xiaodan, ZHANG Qiuju. Relationships of indicators such as level of plasma lipoprotein-associated phospholipase A2 with effect of extracorporeal counterpulsation therapy in high-risk patients with coronary heart disease[J]. Journal of Clinical Medicine in Practice, 2022, 26(3): 63-67. DOI: 10.7619/jcmp.20214222
    [3]GONG Xiaoyong, HU Xiaowei, HE Fei, HU Jianping. Correlations between serum levels of brain natriuretic peptide, hypersensitive C-reactive protein as well as creatine kinase isoenzyme and prognosis of patients after percutaneous coronary intervention[J]. Journal of Clinical Medicine in Practice, 2021, 25(11): 72-76. DOI: 10.7619/jcmp.20211053
    [4]LI Jiancheng, XU Gangzheng. Value of hypersensitivity C-reactive protein in predicting the prognosis of coronary heart disease patients with interventional therapy[J]. Journal of Clinical Medicine in Practice, 2020, 24(18): 34-36. DOI: 10.7619/jcmp.202018009
    [5]WANG Dong. Effect of maixuekang capsule combined with percutaneous coronary intervention on platelet aggregation rate and high sensitivity C-reactive protein in patients with acute coronarysyndrome[J]. Journal of Clinical Medicine in Practice, 2018, (5): 42-44. DOI: 10.7619/jcmp.201805013
    [6]WANG Yanhua. Clinical significance of changes in levels of high sensitive C-reactive protein and cardiac troponin-T in patients with coronary heart disease after percutaneous coronary intervention[J]. Journal of Clinical Medicine in Practice, 2015, (7): 29-31. DOI: 10.7619/jcmp.201507007
    [7]WANG Junjun, YU Chunjuan, DING Qilong, XING Ting. Correlation between serum high sensitivity C-reactive protein and atherosclerosis in patients with type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2015, (5): 5-7. DOI: 10.7619/jcmp.201505002
    [8]CAI Guodong, GU Yang, LIU Shengshan, ZHU Hairong. Change and significance of plasma lipoprotein-associated phospholipase A2 and Lipoprotein(a)levels in atherosclerotic cerebral infraction[J]. Journal of Clinical Medicine in Practice, 2014, (16): 18-21. DOI: 10.7619/jcmp.201416005
    [9]Application of high sensitivity C-reactive protein and pressure wire in dealing with critical lesion during coronary artery intervention[J]. Journal of Clinical Medicine in Practice, 2013, (21): 12-15. DOI: 10.7619/jcmp.201321004
    [10]ZHANG Ying, QIN Shu, ZHANG Dongyin, WANG Kechun. Relationship between high-sensitivity C-reactive protein and the severity and prognosis of coronary atherosclerosis of coronary heart disease[J]. Journal of Clinical Medicine in Practice, 2012, (23): 45-48.
  • Cited by

    Periodical cited type(11)

    1. 刘亚男,房志琴,郭健宏,王亚玲. 冠状动脉慢血流患者血清Lp-PLA_2、NLR水平变化及临床意义. 广东医学. 2024(06): 717-722 .
    2. 朱雅男,张志强,徐继方,朱云霞,安梦秋. 冠状动脉慢血流的相关血清学分析. 心肺血管病杂志. 2023(01): 23-26 .
    3. 孙晓慧,贺静,王瑶,白蓉,薛晓珍,杨莉,乌宇亮. 血清脂蛋白相关磷脂酶A2水平与冠状动脉病变程度及慢血流的相关性分析. 临床医学研究与实践. 2023(26): 9-12 .
    4. 师志芳,贾营,张秀敬,谭化,王爱民,赵洁. 血清血小板活化因子和脂蛋白相关磷脂酶AA2对冠状动脉慢血流现象的预测价值分析. 中国心血管病研究. 2023(12): 1080-1085 .
    5. 梁万添,唐良秋,陈锦峰,庞军刚,周婉明,陈伟强,陈姣. 小檗碱对急性心肌梗死经皮冠状动脉介入术后冠状动脉不稳定斑块的治疗作用. 中国医药. 2021(01): 28-32 .
    6. 刘玲玲,韩磊. 冠状动脉慢血流与超敏CRP及左室舒张功能的相关性研究. 中国医药指南. 2021(22): 11-13 .
    7. 朱宝华,孙岩. 冠状动脉疾病差异基因富集和加权基因共表达网络分析. 实用临床医药杂志. 2021(17): 15-21 . 本站查看
    8. 陶金松,李健,徐霞,陆翊超,李伟章. 冠心病患者介入术中并发冠状动脉慢血流的影响因素. 现代医学与健康研究电子杂志. 2021(19): 93-95 .
    9. 陆爱民,童有福,赵艳. 利伐沙班对冠状动脉慢血流患者凝血功能及C反应蛋白的影响. 医学综述. 2021(21): 4354-4359 .
    10. 孙涛,张艳丽,侯梅凤,姚成俊,潘闽. 血清脂蛋白(a)[Lp(a)]、血清超敏C反应蛋白(hs-CRP)与冠状动脉慢血流之间的相关性. 系统医学. 2021(22): 32-36 .
    11. 陈艳俏,程伟,张成英,陈少军,马友合,孙久林. 保元汤合桂枝茯苓丸治疗冠状动脉慢血流临床观察. 中国中医药现代远程教育. 2020(19): 70-73 .

    Other cited types(0)

Catalog

    Article views (225) PDF downloads (11) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return