Citation: | HUANG Wei, WANG Xu, SHEN Zhimei, CUI Fei. Research progress on mechanism of action of stromal cell derived factor-1 in osteoporosis[J]. Journal of Clinical Medicine in Practice, 2022, 26(21): 144-148. DOI: 10.7619/jcmp.20222400 |
Stromal cell derived factor-1 (SDF-1) is a member of CXC chemokine subfamily, and also known as CXC chemokine ligand-12 (CXCL12). SDF-1 is a small protein composed of 89 amino acids, with 2 cysteine residues and 1 amino acid in the middle; its coding sequence is located in 10q11.1, its open code is 270 bp, and it plays a crucial role in cell proliferation, immune regulation, migration, invasion, angiogenesis, immune escape and inflammatory microenvironment. CXCL12 can affect the growth of stem cells, osteoblasts and osteoclasts through different regulatory axes and interactions with different miRNAs, which plays a role in osteoporosis.
[1] |
ORYAN A, SAHVIEH S. Effects of bisphosphonates on osteoporosis: focus on zoledronate[J]. Life Sci, 2021, 264: 118681. doi: 10.1016/j.lfs.2020.118681
|
[2] |
NOH J Y, YANG Y, JUNG H. Molecular mechanisms and emerging therapeutics for osteoporosis[J]. Int J Mol Sci, 2020, 21(20): E7623. doi: 10.3390/ijms21207623
|
[3] |
CHENG X G, ZHAO K P, ZHA X J, et al. Opportunistic screening using low-dose CT and the prevalence of osteoporosis in China: a nationwide, multicenter study[J]. J Bone Miner Res, 2021, 36(3): 427-435. doi: 10.1002/jbmr.4187
|
[4] |
JANSSENS R, STRUYF S, PROOST P. The unique structural and functional features of CXCL12[J]. Cell Mol Immunol, 2018, 15(4): 299-311. doi: 10.1038/cmi.2017.107
|
[5] |
MOUSAVI A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy[J]. Immunol Lett, 2020, 217: 91-115. doi: 10.1016/j.imlet.2019.11.007
|
[6] |
刘雅雯, 赵群, 郑皓文, 等. 子痫前期患者血清和胎盘组织中CXC型趋化因子配体12和人类软骨糖蛋白-39的表达及意义[J]. 实用临床医药杂志, 2022, 26(9): 16-19, 24. doi: 10.7619/jcmp.20220392
|
[7] |
ZHOU W Q, GUO S C, LIU M L, et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy[J]. Curr Med Chem, 2019, 26(17): 3026-3041. doi: 10.2174/0929867324666170830111531
|
[8] |
CITRO A, PELLEGRINI S, DUGNANI E, et al. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse[J]. Am J Transplant, 2019, 19(11): 3131-3138. doi: 10.1111/ajt.15518
|
[9] |
KLEIST A B, GETSCHMAN A E, ZIAREK J J, et al. New paradigms in chemokine receptor signal transduction: moving beyond the two-site model[J]. Biochem Pharmacol, 2016, 114: 53-68. doi: 10.1016/j.bcp.2016.04.007
|
[10] |
SCHIRALDI M, RAUCCI A, MUÑOZ L M, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4[J]. J Exp Med, 2012, 209(3): 551-563. doi: 10.1084/jem.20111739
|
[11] |
ABEYNAYAKE N, ARTHUR A, GRONTHOS S. Crosstalk between skeletal and neural tissues is critical for skeletal health[J]. Bone, 2021, 142: 115645. doi: 10.1016/j.bone.2020.115645
|
[12] |
OKADA K, NISHIOKA M, KAJI H. Roles of fibrinolytic factors in the alterations in bone marrow hematopoietic stem/progenitor cells during bone repair[J]. Inflamm Regen, 2020, 40: 22. doi: 10.1186/s41232-020-00128-5
|
[13] |
BRYLKA L J, SCHINKE T. Chemokines in physiological and pathological bone remodeling[J]. Front Immunol, 2019, 10: 2182. doi: 10.3389/fimmu.2019.02182
|
[14] |
PONTE F, KIM H N, IYER S, et al. Cxcl12 deletion in mesenchymal cells increases bone turnover and attenuates the loss of cortical bone caused by estrogen deficiency in mice[J]. J Bone Miner Res, 2020, 35(8): 1441-1451. doi: 10.1002/jbmr.4002
|
[15] |
ZHANG N, CHOW S K, LEUNG K S, et al. Ultrasound as a stimulus for musculoskeletal disorders[J]. J Orthop Translat, 2017, 9: 52-59. doi: 10.1016/j.jot.2017.03.004
|
[16] |
SANGHANI-KERAI A, COATHUP M, SAMAZIDEH S, et al. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4[J]. Bone Joint Res, 2017, 6(6): 358-365. doi: 10.1302/2046-3758.66.BJR-2016-0259.R1
|
[17] |
CHEN Q C, ZHENG C P, LI Y Q, et al. Bone targeted delivery of SDF-1 via alendronate functionalized nanoparticles in guiding stem cell migration[J]. ACS Appl Mater Interfaces, 2018, 10(28): 23700-23710. doi: 10.1021/acsami.8b08606
|
[18] |
LIU Q, ZHANG X X, JIAO Y, et al. In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats[J]. Int J Mol Med, 2018, 41(2): 669-678.
|
[19] |
LIU Q, WEN Y, QIU J, et al. Local SDF-1α application enhances the therapeutic efficacy of BMSCs transplantation in osteoporotic bone healing[J]. Heliyon, 2020, 6(6): e04347. doi: 10.1016/j.heliyon.2020.e04347
|
[20] |
SANGHANI-KERAI A, OSAGIE-CLOUARD L, BLUNN G, et al. The influence of age and osteoporosis on bone marrow stem cells from rats[J]. Bone Joint Res, 2018, 7(4): 289-297. doi: 10.1302/2046-3758.74.BJR-2017-0302.R1
|
[21] |
LIM R Z L, LI L, YONG E L, et al. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation[J]. Biochim Biophys Acta Gen Subj, 2018, 1862(7): 1680-1692. doi: 10.1016/j.bbagen.2018.04.016
|
[22] |
LIEN, CHIH-YUAN HO K, LEE O K, et al. Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells[J]. J Bone Miner Res, 2009, 24(5): 837-848. doi: 10.1359/jbmr.081257
|
[23] |
SANGHANI A, OSAGIE-CLOUARD L, SAMIZADEH S, et al. CXCR4 has the potential to enhance bone formation in osteopenic rats[J]. Tissue Eng Part A, 2018, 24(23/24): 1775-1783.
|
[24] |
PERIYASAMY-THANDAVAN S, HERBERG S, AROUNLEUT P, et al. Caloric restriction and the adipokine leptin alter the SDF-1 signaling axis in bone marrow and in bone marrow derived mesenchymal stem cells[J]. Mol Cell Endocrinol, 2015, 410: 64-72. doi: 10.1016/j.mce.2015.03.001
|
[25] |
IM J Y, MIN W K, PARK M H, et al. AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells[J]. BMB Rep, 2014, 47(8): 439-444. doi: 10.5483/BMBRep.2014.47.8.159
|
[26] |
LIU H, YI X, TU S T, et al. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12[J]. Mol Cell Endocrinol, 2021, 520: 111074. doi: 10.1016/j.mce.2020.111074
|
[27] |
HE Q T, LI R B, HU B B, et al. Stromal cell-derived factor-1 promotes osteoblastic differentiation of human bone marrow mesenchymal stem cells via the lncRNA-H19/miR-214-5p/BMP2 axis[J]. J Gene Med, 2021, 23(9): e3366.
|
[28] |
PANG T T, GONG M Z, HAN J T, et al. Relationship between osteoporosis and expression of bcl-2 and CXCL12[J]. Exp Ther Med, 2018, 15(2): 1293-1297.
|
[29] |
YANG X W, HUANG H X, WANG F, et al. Elevated plasma CXCL12/SDF-1 levels are linked with disease severity of postmenopausal osteoporosis[J]. Innate Immun, 2020, 26(3): 222-230. doi: 10.1177/1753425919883365
|
[30] |
CARBONE L D, BUŽKOVÁ P, FINK H A, et al. Association of plasma SDF-1 with bone mineral density, body composition, and hip fractures in older adults: the cardiovascular health study[J]. Calcif Tissue Int, 2017, 100(6): 599-608. doi: 10.1007/s00223-017-0245-8
|
[31] |
马林, 滕兆伟, 陆声. microRNA调控骨髓间充质干细胞成骨分化研究进展[J]. 实用骨科杂志, 2020, 26(3): 244-247. doi: 10.13795/j.cnki.sgkz.2020.03.013
|
[32] |
KHOSLA S. Update on estrogens and the skeleton[J]. J Clin Endocrinol Metab, 2010, 95(8): 3569-3577. doi: 10.1210/jc.2010-0856
|
[33] |
ALMEIDA M, IYER S, MARTIN-MILLAN M, et al. Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual[J]. J Clin Invest, 2013, 123(1): 394-404. doi: 10.1172/JCI65910
|
[34] |
UCER S, IYER S, KIM H N, et al. The effects of aging and sex steroid deficiency on the murine skeleton are independent and mechanistically distinct[J]. J Bone Miner Res, 2017, 32(3): 560-574. doi: 10.1002/jbmr.3014
|
[35] |
LIAN W S, KO J Y, CHEN Y S, et al. microRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12[J]. Cell Death Dis, 2019, 10(10): 705. doi: 10.1038/s41419-019-1942-1
|
[36] |
COMPSTON J E, MCCLUNG M R, LESLIE W D. Osteoporosis[J]. Lancet, 2019, 393(10169): 364-376. doi: 10.1016/S0140-6736(18)32112-3
|
[37] |
PANDEY M K, KALE V P, SONG C H, et al. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways[J]. Exp Hematol, 2014, 42(10): 883-896. doi: 10.1016/j.exphem.2014.07.261
|
[38] |
董辉, 于航, 王永祥. 环状RNA在骨质疏松症中的作用及机制研究进展[J]. 实用临床医药杂志, 2021, 25(4): 111-115. doi: 10.7619/jcmp.20210167
|