YANG Yuan, YU Chenghao, ZUO Rui, LIU Zhe, FU Yi, HOU Ruixing. Research progress on role and mechanism of angiopoietin-like protein 4 in skin wound healing[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 134-137, 142. DOI: 10.7619/jcmp.20222677
Citation: YANG Yuan, YU Chenghao, ZUO Rui, LIU Zhe, FU Yi, HOU Ruixing. Research progress on role and mechanism of angiopoietin-like protein 4 in skin wound healing[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 134-137, 142. DOI: 10.7619/jcmp.20222677

Research progress on role and mechanism of angiopoietin-like protein 4 in skin wound healing

More Information
  • Received Date: August 28, 2022
  • Available Online: November 17, 2022
  • The skin, as the first line of defense in the human body, is often damaged by physical, mechanical, biological, chemical and other factors. The skin wound healing is a complex process, including the regeneration of various tissues, proliferation of granulation tissues and formation of scar tissues, and all the processes show synergism with each other. Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine that is widely expressed in various human tissues. In the process of wound healing, ANGPTL4 not only affects the process of inflammatory response, but also promotes the migration and differentiation of keratinocytes, the proliferation of endothelial cells and the reduction of the expression of scar-related collagen. Therefore, ANGPTL4 plays an important role in the inflammatory and proliferative phases of skin healing. This paper summarizes the function and mechanism of ANGPTL4 in skin wound healing.

  • [1]
    VAN EENIGE R, IN HET PANHUIS W, SCHÖNKE M, et al. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue[J]. Mol Metab, 2022, 60: 101497. doi: 10.1016/j.molmet.2022.101497
    [2]
    KERSTEN S. Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism[J]. J Lipid Res, 2021, 62: 100150. doi: 10.1016/j.jlr.2021.100150
    [3]
    ARYAL B, PRICE N L, SUAREZ Y, et al. ANGPTL4 in metabolic and cardiovascular disease[J]. Trends Mol Med, 2019, 25(8): 723-734. doi: 10.1016/j.molmed.2019.05.010
    [4]
    ZHANG R, ZHANG K Z. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues[J]. Prog Lipid Res, 2022, 85: 101140. doi: 10.1016/j.plipres.2021.101140
    [5]
    FERNÁNDEZ-HERNANDO C, SUÁREZ Y. ANGPTL4: a multifunctional protein involved in metabolism and vascular homeostasis[J]. Curr Opin Hematol, 2020, 27(3): 206-213. doi: 10.1097/MOH.0000000000000580
    [6]
    GUO L, LI S Y, JI F Y, et al. Role of Angptl4 in vascular permeability and inflammation[J]. Inflamm Res, 2014, 63(1): 13-22. doi: 10.1007/s00011-013-0678-0
    [7]
    ZHU P C, GOH Y Y, CHIN H F, et al. Angiopoietin-like 4: a decade of research[J]. Biosci Rep, 2012, 32(3): 211-219. doi: 10.1042/BSR20110102
    [8]
    YELLOWLEY C E, TOUPADAKIS C A, VAPNIARSKY N, et al. Circulating progenitor cells and the expression of Cxcl12, Cxcr4 and angiopoietin-like 4 during wound healing in the murine ear[J]. PLoS One, 2019, 14(9): e0222462. doi: 10.1371/journal.pone.0222462
    [9]
    LI W, WANG Y Y, HUANG R T, et al. Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease[J]. Mol Biol Rep, 2022, 49(10): 9373-9378. doi: 10.1007/s11033-022-07789-0
    [10]
    YANG J M, LI X, XU D Y. Research progress on the involvement of ANGPTL4 and loss-of-function variants in lipid metabolism and coronary heart disease: is the "prime time" of ANGPTL4-targeted therapy for coronary heart disease approaching[J]. Cardiovasc Drugs Ther, 2021, 35(3): 467-477. doi: 10.1007/s10557-020-07001-0
    [11]
    BABA K, KITAJIMA Y, MIYAKE S, et al. Hypoxia-induced ANGPTL4 sustains tumour growth and anoikis resistance through different mechanisms in scirrhous gastric cancer cell lines[J]. Sci Rep, 2017, 7(1): 11127. doi: 10.1038/s41598-017-11769-x
    [12]
    TAN M J, TEO Z, SNG M K, et al. Emerging roles of angiopoietin-like 4 in human cancer[J]. Mol Cancer Res, 2012, 10(6): 677-688. doi: 10.1158/1541-7786.MCR-11-0519
    [13]
    GUO L, LI S Y, ZHAO Y F, et al. Silencing angiopoietin-like protein 4 (ANGPTL4) protects against lipopolysaccharide-induced acute lung injury via regulating SIRT1/NF-kB pathway[J]. J Cell Physiol, 2015, 230(10): 2390-2402. doi: 10.1002/jcp.24969
    [14]
    ZHANG X Y, TU J, DING S Z, et al. Increased angiopoietin-like 4 expression ameliorates inflammatory bowel diseases via suppressing CD8+ T cell activities[J]. Biochem Biophys Res Commun, 2022, 612: 37-43. doi: 10.1016/j.bbrc.2022.03.153
    [15]
    DEKONINCK S, BLANPAIN C. Stem cell dynamics, migration and plasticity during wound healing[J]. Nat Cell Biol, 2019, 21(1): 18-24. doi: 10.1038/s41556-018-0237-6
    [16]
    BEYER S, KOCH M, LEE Y H, et al. An in vitro model of angiogenesis during wound healing provides insights into the complex role of cells and factors in the inflammatory and proliferation phase[J]. Int J Mol Sci, 2018, 19(10): 2913. doi: 10.3390/ijms19102913
    [17]
    KANT V, SHARMA M, JANGIR B L, et al. Acceleration of wound healing by quercetin in diabetic rats requires mitigation of oxidative stress and stimulation of the proliferative phase[J]. Biotech Histochem, 2022, 97(6): 461-472. doi: 10.1080/10520295.2022.2032829
    [18]
    JOOST S, JACOB T, SUN X Y, et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing[J]. Cell Rep, 2018, 25(3): 585-597, e7. doi: 10.1016/j.celrep.2018.09.059
    [19]
    SAHELI M, BAYAT M, GANJI R, et al. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors[J]. Arch Dermatol Res, 2020, 312(5): 325-336. doi: 10.1007/s00403-019-02016-6
    [20]
    OH E J, GANGADARAN P, RAJENDRAN R L, et al. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions[J]. Stem Cells, 2021, 39(3): 266-279. doi: 10.1002/stem.3310
    [21]
    王健, 陆芸, 杨小锋. 中性粒细胞在组织修复中作用及机制的研究进展[J]. 中华创伤杂志, 2022(3): 268-273.
    [22]
    WIDGEROW A D. Cellular resolution of inflammation: catabasis[J]. and, 2012, 20(1): 2-7.
    [23]
    SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. doi: 10.1002/jcp.26429
    [24]
    TAKEUCHI T, ITO M, YAMAGUCHI S, et al. Hydrocolloid dressing improves wound healing by increasing M2 macrophage polarization in mice with diabetes[J]. Nagoya J Med Sci, 2020, 82(3): 487-498.
    [25]
    XIAO H, WU Y P, YANG C C, et al. Knockout of E2F1 enhances the polarization of M2 phenotype macrophages to accelerate the wound healing process[J]. Kaohsiung J Med Sci, 2020, 36(9): 692-698. doi: 10.1002/kjm2.12222
    [26]
    WEE W K J, LOW Z S, OOI C K, et al. Single-cell analysis of skin immune cells reveals an Angptl4-ifi20b axis that regulates monocyte differentiation during wound healing[J]. Cell Death Dis, 2022, 13(2): 180. doi: 10.1038/s41419-022-04638-7
    [27]
    ZHOU S Y, TU J, DING S Z, et al. High expression of angiopoietin-like protein 4 in advanced colorectal cancer and its association with regulatory T cells and M2 macrophages[J]. Pathol Oncol Res, 2020, 26(2): 1269-1278. doi: 10.1007/s12253-019-00695-0
    [28]
    JUNG K H, SON M K, YAN H H, et al. ANGPTL4 exacerbates pancreatitis by augmenting acinar cell injury through upregulation of C5a[J]. EMBO Mol Med, 2020, 12(8): e11222.
    [29]
    BÁRTOLO I, REIS R L, MARQUES A P, et al. Keratinocyte growth factor-based strategies for wound re-epithelialization[J]. Tissue Eng Part B Rev, 2022, 28(3): 665-676. doi: 10.1089/ten.teb.2021.0030
    [30]
    GOH Y Y, PAL M, CHONG H C, et al. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration[J]. Am J Pathol, 2010, 177(6): 2791-2803. doi: 10.2353/ajpath.2010.100129
    [31]
    CASWELL P T, NORMAN J C. Integrin trafficking and the control of cell migration[J]. Traffic, 2006, 7(1): 14-21. doi: 10.1111/j.1600-0854.2005.00362.x
    [32]
    PAL M, TAN M J, HUANG R L, et al. Angiopoietin-like 4 regulates epidermal differentiation[J]. PLoS One, 2011, 6(9): e25377. doi: 10.1371/journal.pone.0025377
    [33]
    BAINBRIDGE P. Wound healing and the role of fibroblasts[J]. J Wound Care, 2013, 22(8): 407-408, 410-412. doi: 10.12968/jowc.2013.22.8.407
    [34]
    JAMIL S, MOUSAVIZADEH R, ROSHAN-MONIRI M, et al. Angiopoietin-like 4 enhances the proliferation and migration of tendon fibroblasts[J]. Med Sci Sports Exerc, 2017, 49(9): 1769-1777. doi: 10.1249/MSS.0000000000001294
    [35]
    ZHANG K N, ZHAI Z W, YU S S, et al. DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway[J]. J Cancer, 2021, 12(18): 5473-5485. doi: 10.7150/jca.52338
    [36]
    TEO Z, CHAN J S K, CHONG H C, et al. Angiopoietin-like 4 induces a β-catenin-mediated upregulation of ID3 in fibroblasts to reduce scar collagen expression[J]. Sci Rep, 2017, 7(1): 6303. doi: 10.1038/s41598-017-05869-x
    [37]
    HUANG R L, TEO Z, CHONG H C, et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters[J]. Blood, 2011, 118(14): 3990-4002. doi: 10.1182/blood-2011-01-328716
    [38]
    WU Y X, GAO J H, LIU X J. Deregulation of angiopoietin-like 4 slows ovarian cancer progression through vascular endothelial growth factor receptor 2 phosphorylation[J]. Cancer Cell Int, 2021, 21(1): 171. doi: 10.1186/s12935-021-01865-4
    [39]
    CHONG H C, CHAN J S, GOH C Q, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice[J]. Mol Ther, 2014, 22(9): 1593-1604. doi: 10.1038/mt.2014.102
  • Cited by

    Periodical cited type(35)

    1. 卢新阳,孙奕舒,徐涛,范龙彬,常雅宁,周英骏. 玫瑰蜂花粉破壁工艺优化及其醇提物生理活性比较. 食品工业科技. 2025(04): 176-184 .
    2. 彭展. 前列舒通胶囊联合坦索罗辛治疗轻度良性前列腺增生患者的效果. 中国民康医学. 2024(05): 106-109 .
    3. 马嘉,邢建月,张宇鹏,刘光珍. 中成药治疗良性前列腺增生有效性和安全性的贝叶斯网状Meta分析. 药物流行病学杂志. 2024(03): 301-318 .
    4. 凡丽丽,任贤,赵会云. 腕踝针镇痛对老年患者经尿道前列腺等离子电切术后膀胱痉挛及康复效果的影响. 深圳中西医结合杂志. 2024(07): 46-48 .
    5. 王红慧,姚华婧,王本鹏. 基于网络药理学及分子对接探讨灵泽片治疗前列腺良性增生的作用机制. 中医临床研究. 2024(20): 7-14 .
    6. 张秋燕,张恋. 基于加速康复外科理念的护理在良性前列腺增生患者围手术期中的应用效果分析. 延边大学医学学报. 2024(05): 652-655 .
    7. 赵锦燕,王雪皎,李斐,林久茂,周建衡. 前列宁调控基质金属蛋白酶降解胶原蛋白对前列腺增生治疗的影响. 世界中医药. 2024(22): 3467-3472+3478 .
    8. 张文武,梁美丹,李峰. 中西医结合治疗良性前列腺增生研究进展. 辽宁中医药大学学报. 2023(01): 216-220 .
    9. 米嘉希,陈慧,曹璐,朱冠辰. 基于加速康复外科理念的护理在良性前列腺增生患者围术期中的应用. 护理实践与研究. 2023(01): 6-10 .
    10. 黄瑜,蔡润东,李军. 小蓟饮子治疗良性前列腺增生患者经尿道前列腺切除术后出血的疗效. 中国民间疗法. 2023(03): 60-63 .
    11. 杨硕,谢雁鸣,王连心,孙粼希. 夏荔芪胶囊治疗前列腺增生(本虚标实证)的临床综合评价. 中草药. 2023(09): 2879-2888 .
    12. 张志忠. 前列腺汽化电切术治疗前列腺增生合并慢性前列腺炎的效果及其对炎症因子、尿动力学的影响. 黑龙江医学. 2023(08): 925-928 .
    13. 朱媛媛,边利萍. 手术室预见性干预结合舒适性护理对前列腺增生手术患者压力性损伤及应激反应的影响. 临床医学研究与实践. 2023(13): 150-152 .
    14. 曹艳敏,梁敬哲,李馨悦,王丹妮,董梦薇,何立. 督脉药饼灸法治疗肾虚血瘀型良性前列腺增生的临床研究. 河北中医药学报. 2023(03): 25-28+34 .
    15. 吴崇才,林鸿彪. PKURP术联合同期行TEP对老年前列腺增生合并腹股沟疝治疗的效果. 中国老年学杂志. 2023(13): 3152-3155 .
    16. 贾玉聪,张辉,张凯波,樊立鹏,陈翔,郝高利,付晓君. 针刺联合益肾通络督脉灸治疗良性前列腺增生. 中医学报. 2023(08): 1783-1787 .
    17. 梁博,商学军,裴丽君. 中国中老年男性人群患慢性疾病与可能肌少症发生风险关联的队列研究. 中华男科学杂志. 2023(01): 10-18 .
    18. 于楠楠,刘征,匡禹霏,韩亚鹏,薛剑,李禹洋,孙殿甲. 热敏灸结合芒针透刺对良性前列腺增生症尿动力学、血中激素及PSA水平影响的临床研究. 针灸临床杂志. 2023(08): 38-42 .
    19. 王鹏,熊伟,龙衍,周青. 周青基于“肺为水之上源”论治男性下尿路症状经验. 中医药导报. 2023(08): 193-197 .
    20. 杨周,李健,陈治宇,张文雯,胡霞,于朝春. 五苓散在膀胱功能障碍相关疾病中的临床应用进展. 世界中西医结合杂志. 2023(08): 1692-1696 .
    21. 尹晓艳,习小燕,周晓兰. 综合性护理应用于前列腺电切术病人的效果评价. 现代诊断与治疗. 2023(13): 2029-2031 .
    22. 周建衡,赵锦燕,王雪皎,李斐,林久茂. 前列宁通过调控前列腺MMP-2、TIMP-2降解层粘连蛋白治疗良性前列腺增生的机制研究. 福建中医药. 2023(09): 51-55 .
    23. 李风. 六味南术汤治疗前列腺增生症临床观察. 中国中医药现代远程教育. 2023(24): 97-99 .
    24. 韩亮,王彬,张新荣,彭爱进,杨勇,李海松,张霄潇. 良性前列腺增生实验模型述评. 中国实验方剂学杂志. 2022(02): 227-235 .
    25. 孙粼希,吕健,谢雁鸣. 夏荔芪胶囊治疗良性前列腺增生的有效性和安全性的Meta分析. 中药新药与临床药理. 2022(02): 265-272 .
    26. 朱文雄,袁轶峰,彭涛,张熙,刘涛,李博,陈其华. 益气活血消癥方干预TFF/Wnt信号通路治疗前列腺增生的研究. 北京中医药大学学报. 2022(02): 193-200 .
    27. 张强,杨晓亮,杨晓波,师宏斌,赵瑞宁,张超. CD71与E-cadherin在丙酸睾酮诱导的前列腺组织中的表达. 宁夏医学杂志. 2022(04): 319-321+385 .
    28. 于国盛,杨波,王成达,郝战宽. 两种手术方式治疗大体积良性前列腺增生症效果比较. 中国实用乡村医生杂志. 2022(04): 47-49+53 .
    29. 马允,侯冰燕,张志,刘颖,王文地,侯俊玲,王文全. 不同龄SD大鼠自发性良性前列腺增生的研究. 西北药学杂志. 2022(03): 112-116 .
    30. 张凯波,李桓,王锁刚. 基于网络药理学及分子对接技术研究五苓散治疗前列腺增生的作用机制. 中医学报. 2022(08): 1727-1733 .
    31. 刘尧,赵永哲,赵伟,贺迎雪,李乘龙,张雷,冯士楼. 经尿道前列腺钬激光剜除术对良性前列腺增生患者的影响. 中外医学研究. 2022(20): 33-38 .
    32. 项效益. 前列腺动脉栓塞术联合经尿道前列腺电切术治疗体积>80 ml良性前列腺增生的短中期随访研究. 临床医学. 2022(09): 22-25 .
    33. 王皓,冯岳龙,杨玲,张强,高裕,李培军. ALDH2在丙酸睾酮诱导的前列腺组织中的表达. 宁夏医学杂志. 2022(11): 968-969+956 .
    34. 王琳琳,许丽丽,范君,钱余. 氧化应激标志物与前列腺增生和前列腺癌的相关性. 检验医学. 2022(12): 1135-1140 .
    35. 郝梦,米尔扎提·麦麦提,马璇,张明惠,季志红. 基于网络药理学和分子对接探讨西帕依麦孜彼子口服液抗良性前列腺增生的作用机制. 中国药师. 2021(12): 2148-2153+2166 .

    Other cited types(20)

Catalog

    Article views (211) PDF downloads (13) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return