Citation: | YANG Yuan, YU Chenghao, ZUO Rui, LIU Zhe, FU Yi, HOU Ruixing. Research progress on role and mechanism of angiopoietin-like protein 4 in skin wound healing[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 134-137, 142. DOI: 10.7619/jcmp.20222677 |
The skin, as the first line of defense in the human body, is often damaged by physical, mechanical, biological, chemical and other factors. The skin wound healing is a complex process, including the regeneration of various tissues, proliferation of granulation tissues and formation of scar tissues, and all the processes show synergism with each other. Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine that is widely expressed in various human tissues. In the process of wound healing, ANGPTL4 not only affects the process of inflammatory response, but also promotes the migration and differentiation of keratinocytes, the proliferation of endothelial cells and the reduction of the expression of scar-related collagen. Therefore, ANGPTL4 plays an important role in the inflammatory and proliferative phases of skin healing. This paper summarizes the function and mechanism of ANGPTL4 in skin wound healing.
[1] |
VAN EENIGE R, IN HET PANHUIS W, SCHÖNKE M, et al. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue[J]. Mol Metab, 2022, 60: 101497. doi: 10.1016/j.molmet.2022.101497
|
[2] |
KERSTEN S. Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism[J]. J Lipid Res, 2021, 62: 100150. doi: 10.1016/j.jlr.2021.100150
|
[3] |
ARYAL B, PRICE N L, SUAREZ Y, et al. ANGPTL4 in metabolic and cardiovascular disease[J]. Trends Mol Med, 2019, 25(8): 723-734. doi: 10.1016/j.molmed.2019.05.010
|
[4] |
ZHANG R, ZHANG K Z. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues[J]. Prog Lipid Res, 2022, 85: 101140. doi: 10.1016/j.plipres.2021.101140
|
[5] |
FERNÁNDEZ-HERNANDO C, SUÁREZ Y. ANGPTL4: a multifunctional protein involved in metabolism and vascular homeostasis[J]. Curr Opin Hematol, 2020, 27(3): 206-213. doi: 10.1097/MOH.0000000000000580
|
[6] |
GUO L, LI S Y, JI F Y, et al. Role of Angptl4 in vascular permeability and inflammation[J]. Inflamm Res, 2014, 63(1): 13-22. doi: 10.1007/s00011-013-0678-0
|
[7] |
ZHU P C, GOH Y Y, CHIN H F, et al. Angiopoietin-like 4: a decade of research[J]. Biosci Rep, 2012, 32(3): 211-219. doi: 10.1042/BSR20110102
|
[8] |
YELLOWLEY C E, TOUPADAKIS C A, VAPNIARSKY N, et al. Circulating progenitor cells and the expression of Cxcl12, Cxcr4 and angiopoietin-like 4 during wound healing in the murine ear[J]. PLoS One, 2019, 14(9): e0222462. doi: 10.1371/journal.pone.0222462
|
[9] |
LI W, WANG Y Y, HUANG R T, et al. Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease[J]. Mol Biol Rep, 2022, 49(10): 9373-9378. doi: 10.1007/s11033-022-07789-0
|
[10] |
YANG J M, LI X, XU D Y. Research progress on the involvement of ANGPTL4 and loss-of-function variants in lipid metabolism and coronary heart disease: is the "prime time" of ANGPTL4-targeted therapy for coronary heart disease approaching[J]. Cardiovasc Drugs Ther, 2021, 35(3): 467-477. doi: 10.1007/s10557-020-07001-0
|
[11] |
BABA K, KITAJIMA Y, MIYAKE S, et al. Hypoxia-induced ANGPTL4 sustains tumour growth and anoikis resistance through different mechanisms in scirrhous gastric cancer cell lines[J]. Sci Rep, 2017, 7(1): 11127. doi: 10.1038/s41598-017-11769-x
|
[12] |
TAN M J, TEO Z, SNG M K, et al. Emerging roles of angiopoietin-like 4 in human cancer[J]. Mol Cancer Res, 2012, 10(6): 677-688. doi: 10.1158/1541-7786.MCR-11-0519
|
[13] |
GUO L, LI S Y, ZHAO Y F, et al. Silencing angiopoietin-like protein 4 (ANGPTL4) protects against lipopolysaccharide-induced acute lung injury via regulating SIRT1/NF-kB pathway[J]. J Cell Physiol, 2015, 230(10): 2390-2402. doi: 10.1002/jcp.24969
|
[14] |
ZHANG X Y, TU J, DING S Z, et al. Increased angiopoietin-like 4 expression ameliorates inflammatory bowel diseases via suppressing CD8+ T cell activities[J]. Biochem Biophys Res Commun, 2022, 612: 37-43. doi: 10.1016/j.bbrc.2022.03.153
|
[15] |
DEKONINCK S, BLANPAIN C. Stem cell dynamics, migration and plasticity during wound healing[J]. Nat Cell Biol, 2019, 21(1): 18-24. doi: 10.1038/s41556-018-0237-6
|
[16] |
BEYER S, KOCH M, LEE Y H, et al. An in vitro model of angiogenesis during wound healing provides insights into the complex role of cells and factors in the inflammatory and proliferation phase[J]. Int J Mol Sci, 2018, 19(10): 2913. doi: 10.3390/ijms19102913
|
[17] |
KANT V, SHARMA M, JANGIR B L, et al. Acceleration of wound healing by quercetin in diabetic rats requires mitigation of oxidative stress and stimulation of the proliferative phase[J]. Biotech Histochem, 2022, 97(6): 461-472. doi: 10.1080/10520295.2022.2032829
|
[18] |
JOOST S, JACOB T, SUN X Y, et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing[J]. Cell Rep, 2018, 25(3): 585-597, e7. doi: 10.1016/j.celrep.2018.09.059
|
[19] |
SAHELI M, BAYAT M, GANJI R, et al. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors[J]. Arch Dermatol Res, 2020, 312(5): 325-336. doi: 10.1007/s00403-019-02016-6
|
[20] |
OH E J, GANGADARAN P, RAJENDRAN R L, et al. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions[J]. Stem Cells, 2021, 39(3): 266-279. doi: 10.1002/stem.3310
|
[21] |
王健, 陆芸, 杨小锋. 中性粒细胞在组织修复中作用及机制的研究进展[J]. 中华创伤杂志, 2022(3): 268-273.
|
[22] |
WIDGEROW A D. Cellular resolution of inflammation: catabasis[J]. and, 2012, 20(1): 2-7.
|
[23] |
SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. doi: 10.1002/jcp.26429
|
[24] |
TAKEUCHI T, ITO M, YAMAGUCHI S, et al. Hydrocolloid dressing improves wound healing by increasing M2 macrophage polarization in mice with diabetes[J]. Nagoya J Med Sci, 2020, 82(3): 487-498.
|
[25] |
XIAO H, WU Y P, YANG C C, et al. Knockout of E2F1 enhances the polarization of M2 phenotype macrophages to accelerate the wound healing process[J]. Kaohsiung J Med Sci, 2020, 36(9): 692-698. doi: 10.1002/kjm2.12222
|
[26] |
WEE W K J, LOW Z S, OOI C K, et al. Single-cell analysis of skin immune cells reveals an Angptl4-ifi20b axis that regulates monocyte differentiation during wound healing[J]. Cell Death Dis, 2022, 13(2): 180. doi: 10.1038/s41419-022-04638-7
|
[27] |
ZHOU S Y, TU J, DING S Z, et al. High expression of angiopoietin-like protein 4 in advanced colorectal cancer and its association with regulatory T cells and M2 macrophages[J]. Pathol Oncol Res, 2020, 26(2): 1269-1278. doi: 10.1007/s12253-019-00695-0
|
[28] |
JUNG K H, SON M K, YAN H H, et al. ANGPTL4 exacerbates pancreatitis by augmenting acinar cell injury through upregulation of C5a[J]. EMBO Mol Med, 2020, 12(8): e11222.
|
[29] |
BÁRTOLO I, REIS R L, MARQUES A P, et al. Keratinocyte growth factor-based strategies for wound re-epithelialization[J]. Tissue Eng Part B Rev, 2022, 28(3): 665-676. doi: 10.1089/ten.teb.2021.0030
|
[30] |
GOH Y Y, PAL M, CHONG H C, et al. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration[J]. Am J Pathol, 2010, 177(6): 2791-2803. doi: 10.2353/ajpath.2010.100129
|
[31] |
CASWELL P T, NORMAN J C. Integrin trafficking and the control of cell migration[J]. Traffic, 2006, 7(1): 14-21. doi: 10.1111/j.1600-0854.2005.00362.x
|
[32] |
PAL M, TAN M J, HUANG R L, et al. Angiopoietin-like 4 regulates epidermal differentiation[J]. PLoS One, 2011, 6(9): e25377. doi: 10.1371/journal.pone.0025377
|
[33] |
BAINBRIDGE P. Wound healing and the role of fibroblasts[J]. J Wound Care, 2013, 22(8): 407-408, 410-412. doi: 10.12968/jowc.2013.22.8.407
|
[34] |
JAMIL S, MOUSAVIZADEH R, ROSHAN-MONIRI M, et al. Angiopoietin-like 4 enhances the proliferation and migration of tendon fibroblasts[J]. Med Sci Sports Exerc, 2017, 49(9): 1769-1777. doi: 10.1249/MSS.0000000000001294
|
[35] |
ZHANG K N, ZHAI Z W, YU S S, et al. DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway[J]. J Cancer, 2021, 12(18): 5473-5485. doi: 10.7150/jca.52338
|
[36] |
TEO Z, CHAN J S K, CHONG H C, et al. Angiopoietin-like 4 induces a β-catenin-mediated upregulation of ID3 in fibroblasts to reduce scar collagen expression[J]. Sci Rep, 2017, 7(1): 6303. doi: 10.1038/s41598-017-05869-x
|
[37] |
HUANG R L, TEO Z, CHONG H C, et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters[J]. Blood, 2011, 118(14): 3990-4002. doi: 10.1182/blood-2011-01-328716
|
[38] |
WU Y X, GAO J H, LIU X J. Deregulation of angiopoietin-like 4 slows ovarian cancer progression through vascular endothelial growth factor receptor 2 phosphorylation[J]. Cancer Cell Int, 2021, 21(1): 171. doi: 10.1186/s12935-021-01865-4
|
[39] |
CHONG H C, CHAN J S, GOH C Q, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice[J]. Mol Ther, 2014, 22(9): 1593-1604. doi: 10.1038/mt.2014.102
|