Citation: | YI Yanan, HAN Chongxu, LIANG Chengtong, YANG Mingyu, WANG Mengting. Risk factors identification for prognosis of ovarian cancer patients with lung metastasis and establishment of nomogram[J]. Journal of Clinical Medicine in Practice, 2023, 27(1): 1-8, 15. DOI: 10.7619/jcmp.20223123 |
To investigate the independent prognostic factors for ovarian cancer patients with lung metastases based on the Surveillance, Epidemiology and End Results Database (SEER) of the United States and to establish a survival prediction model.
Clinical data of 1 804 ovarian cancer patients diagnosed with lung metastases from 2010 to 2015 were collected, and they were divided into modeling set (1 203 cases) and validation set (601 cases) in a 2:1 ratio. Independent prognostic factors of ovarian cancer patients with lung metastasis were evaluated by Cox regression analysis and Nomogram prediction model was established. C index, receiver operating characteristic (ROC) curve and correction curve were used to evaluate the accuracy of the model.
Multivariate Cox regression analysis showed that age>80 years old (HR=1.42; 95%CI, 1.15 to 1.76), moderately or poorly differentiated or undifferentiated tumor (HR=3.96, 4.24, 3.03; 95%CI, 1.21 to 12.98, 1.34 to 13.43, 0.95 to 9.70), Nx stage of N stage (HR=1.25; 95%CI, 1.06 to 1.47), ten positive lymph nodes or more (HR=1.44, 95%CI, 1.01 to 2.10), bone metastasis (HR=1.42; 95%CI, 1.10 to 1.83), liver metastasis (HR=1.28; 95%CI, 1.12 to 1.47), elevated CA125 (HR=1.89; 95%CI, 1.18 to 3.05) were independent risk factors for overall survival (P < 0.05). The epithelial type II of histological type (HR=0.70; 95%CI, 0.52 to 0.92), surgical R0 resection or other surgical methods (HR=0.40, 0.54, 95%CI, 0.31 to 0.51, 0.45 to 0.66), chemotherapy (HR=0.31, 95%CI, 0.26 to 0.36) and married status (HR=0.86, 95%CI, 0.75 to 0.99) were independent protective factors for overall survival (P < 0.05). Age>80 years old, no surgery, no chemotherapy, liver metastasis, bone metastasis, and elevated cancer antigen-125 (CA125) were independent risk factors for cancer-specific survival (P < 0.05). Nomogram prediction models were established for the overall survival rate and cancer-specific survival rate, and the C index of internal and external verification were 0.767, 0.761 and 0.750, 0.742, and the areas under the curve were 0.775, 0.783 and 0.749, 0.764, respectively.
Identifying the independent prognostic factors of patients with ovarian cancer with lung metastasis and establishing a quantitative Nomogram prediction model will help clinicians evaluate the prognosis more accurately.
[1] |
FERLAY J, STELIAROVA-FOUCHER E, LORTET-TIEULENT J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012[J]. Eur J Cancer, 2013, 49(6): 1374-1403. doi: 10.1016/j.ejca.2012.12.027
|
[2] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019[J]. CA A Cancer J Clin, 2019, 69(1): 7-34. doi: 10.3322/caac.21551
|
[3] |
ZHANG M H, CHENG S S, JIN Y, et al. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer[J]. Biochim Biophys Acta BBA Rev Cancer, 2021, 1875(2): 188503. doi: 10.1016/j.bbcan.2021.188503
|
[4] |
PROCACCIO L, BERGAMO F, MANAI C, et al. An overview on clinical, pathological and molecular features of lung metastases from colorectal cancer[J]. Expert Rev Respir Med, 2019, 13(7): 635-644. doi: 10.1080/17476348.2019.1620605
|
[5] |
LUTZ S, NORRELL R, BERTUCIO C, et al. Symptom frequency and severity in patients with metastatic or locally recurrent lung cancer: a prospective study using the Lung Cancer Symptom Scale in a community hospital[J]. J Palliat Med, 2001, 4(2): 157-165. doi: 10.1089/109662101750290191
|
[6] |
BALACHANDRAN V P, GONEN M, SMITH J J, et al. Nomograms in oncology: more than meets the eye[J]. Lancet Oncol, 2015, 16(4): e173-e180. doi: 10.1016/S1470-2045(14)71116-7
|
[7] |
XU J Q, HUSSAIN I, WANG L Y, et al. Incidence of and risk factors associated with lung metastases in newly diagnosed epithelial ovarian cancer with a look on prognosis after diagnosis: a population-based cohort study of the SEER database[J]. Arch Gynecol Obstet, 2021, 304(4): 1007-1020. doi: 10.1007/s00404-021-05997-w
|
[8] |
YUAN Y F, GUO F F, WANG R R, et al. Development and validation of a nomogram to predict synchronous lung metastases in patients with ovarian cancer: a large cohort study[J]. Biosci Rep, 2020, 40(11): BSR20203089. doi: 10.1042/BSR20203089
|
[9] |
PERES L C, CUSHING-HAUGEN K L, KÖBEL M, et al. Invasive epithelial ovarian cancer survival by histotype and disease stage[J]. J Natl Cancer Inst, 2019, 111(1): 60-68. doi: 10.1093/jnci/djy071
|
[10] |
MATZ M, COLEMAN M P, SANT M, et al. The histology of ovarian cancer: worldwide distribution and implications for international survival comparisons (CONCORD-2)[J]. Gynecol Oncol, 2017, 144(2): 405-413. doi: 10.1016/j.ygyno.2016.10.019
|
[11] |
KURMAN R J, SHIH I M. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded[J]. Am J Pathol, 2016, 186(4): 733-747. doi: 10.1016/j.ajpath.2015.11.011
|
[12] |
符伶俐, 韩江龙, 付振明. 年轻卵巢癌患者的临床特征及影响生存结局的因素: 一项人群队列回顾性研究[J]. 临床与病理杂志, 2021, 41(10): 2274-2284. doi: 10.3978/j.issn.2095-6959.2021.10.008
|
[13] |
COOPER B C, SOOD A K, DAVIS C S, et al. Preoperative CA 125 levels: an independent prognostic factor for epithelial ovarian cancer[J]. Obstet Gynecol, 2002, 100(1): 59-64.
|
[14] |
MATTE I, GARDE-GRANGER P, BESSETTE P, et al. Ascites from ovarian cancer patients stimulates MUC16 mucin expression and secretion in human peritoneal mesothelial cells through an Akt-dependent pathway[J]. BMC Cancer, 2019, 19(1): 406. doi: 10.1186/s12885-019-5611-7
|
[15] |
LEE M, CHANG M Y, YOO H, et al. Clinical significance of CA125 level after the first cycle of chemotherapy on survival of patients with advanced ovarian cancer[J]. Yonsei Med J, 2016, 57(3): 580-587. doi: 10.3349/ymj.2016.57.3.580
|
[16] |
DU BOIS A, REUSS A, PUJADE-LAURAINE E, et al. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d'Investigateurs Nationaux Pour les Etudes des Cancers de l'Ovaire (GINECO)[J]. Cancer, 2009, 115(6): 1234-1244. doi: 10.1002/cncr.24149
|
[17] |
KEYVER-PAIK M D, ABRAMIAN A, DOMRÖSE C, et al. Integrated care in ovarian cancer "IgV Ovar": results of a German pilot for higher quality in treatment of ovarian cancer[J]. J Cancer Res Clin Oncol, 2016, 142(2): 481-487. doi: 10.1007/s00432-015-2055-6
|
[18] |
FRIEDRICH M, FRIEDRICH D, KRAFT C, et al. Multimodal treatment of primary advanced ovarian cancer[J]. Anticancer Res, 2021, 41(7): 3253-3260. doi: 10.21873/anticanres.15111
|
[19] |
KAISER N C, HARTOONIAN N, OWEN J E. Toward a cancer-specific model of psychological distress: population data from the 2003-2005 National Health Interview Surveys[J]. J Cancer Surviv, 2010, 4(4): 291-302. doi: 10.1007/s11764-010-0120-3
|
[20] |
SIN N L, DIMATTEO M R. Depression treatment enhances adherence to antiretroviral therapy: a meta-analysis[J]. ann behav med, 2014, 47(3): 259-269. doi: 10.1007/s12160-013-9559-6
|
[21] |
COHEN S D, SHARMA T, ACQUAVIVA K, et al. Social support and chronic kidney disease: an update[J]. Adv Chronic Kidney Dis, 2007, 14(4): 335-344. doi: 10.1053/j.ackd.2007.04.007
|
[22] |
AIZER A A, CHEN M H, MCCARTHY E P, et al. Marital status and survival in patients with cancer[J]. J Clin Oncol, 2013, 31(31): 3869-3876. doi: 10.1200/JCO.2013.49.6489
|
[23] |
SATIN J R, LINDEN W, PHILLIPS M J. Depression as a predictor of disease progression and mortality in cancer patients: a meta-analysis[J]. Cancer, 2009, 115(22): 5349-5361. doi: 10.1002/cncr.24561
|
[24] |
GE L X, MORDIFFI S Z. Factors associated with higher caregiver burden among family caregivers of elderly cancer patients: a systematic review[J]. Cancer Nurs, 2017, 40(6): 471-478. doi: 10.1097/NCC.0000000000000445
|
[25] |
KIM A, LEE J A, PARK H S. Health behaviors and illness according to marital status in middle-aged Koreans[J]. J Public Health (Oxf), 2018, 40(2): e99-e106. doi: 10.1093/pubmed/fdx071
|
[26] |
FRANCESCHI C, CAPRI M, MONTI D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans[J]. Mech Ageing Dev, 2007, 128(1): 92-105. doi: 10.1016/j.mad.2006.11.016
|
[27] |
GARSSEN B, GOODKIN K. On the role of immunological factors as mediators between psychosocial factors and cancer progression[J]. Psychiatry Res, 1999, 85(1): 51-61. doi: 10.1016/S0165-1781(99)00008-6
|
[28] |
SERRA-REXACH J A, JIMENEZ A B, GARCÍA-ALHAMBRA M A, et al. Differences in the therapeutic approach to colorectal cancer in young and elderly patients[J]. Oncologist, 2012, 17(10): 1277-1285. doi: 10.1634/theoncologist.2012-0060
|
[1] | ZHOU Zeng, XU Jing, FENG Zhaohai, ZHENG Yingwei, CUI Min, WANG Zongyu, FANG Fang, LI Meiying. Diagnostic value of electromyographic tremor indicators for Parkinson's disease based on Logistic regression model[J]. Journal of Clinical Medicine in Practice, 2025, 29(1): 33-38. DOI: 10.7619/jcmp.20241497 |
[2] | HUANG Qinghua, QIU Tengyu, LI Yanxing, MO Xiaoai. Related factors of fear of disease progression in patients with liver failure based on principal component analysis[J]. Journal of Clinical Medicine in Practice, 2023, 27(19): 89-93, 100. DOI: 10.7619/jcmp.20231869 |
[3] | CHEN Xiaohui, JIAO Zishan, WANG Nana, SHA Kaihui. Decision tree C5.0 versus Logistic regression model in predicting postpartum diastasis recti abdominis[J]. Journal of Clinical Medicine in Practice, 2023, 27(16): 115-120, 126. DOI: 10.7619/jcmp.20230893 |
[4] | YANG Yang, ZHU Yi, SUN Hao. Analysis of risk factors of nine deaths cansed by tetanus[J]. Journal of Clinical Medicine in Practice, 2020, 24(22): 63-65,69. DOI: 10.7619/jcmp.202022018 |
[5] | FENG Xuewu, SHI Leijun. Analysis on risk factors of femoral head necrosis after operation in patients with traumatic femoral neck fractures[J]. Journal of Clinical Medicine in Practice, 2020, 24(13): 68-70,74. DOI: 10.7619/jcmp.202013020 |
[6] | ZHOU Zongbin, ZHAO Guifen, LAN Wenquan, LI Yuanfa, ZHOU Zhigang. Analysis of influencing factors of cancer-related anemia in digestive tract tumor patients[J]. Journal of Clinical Medicine in Practice, 2020, 24(8): 63-65. DOI: 10.7619/jcmp.202008016 |
[7] | ZHOU Hong, XU Chao, YE Shuping. Analysis of Logistic risk factors in the prognosis of subarachnoid hemorrhage[J]. Journal of Clinical Medicine in Practice, 2017, (19): 41-43. DOI: 10.7619/jcmp.201719012 |
[8] | LI Yunduan, LIU Weiwu, XU Xiuying. Multivariate analysis of fetal growth restriction and its prevention measures[J]. Journal of Clinical Medicine in Practice, 2017, (1): 90-93. DOI: 10.7619/jcmp.201701027 |
[9] | MENG Mei, LI Ping, ZHAO Xiaolan. Related factors leading to limb pain after PICC for 24 h by Logistic regression analysis and its nursing countermeasures[J]. Journal of Clinical Medicine in Practice, 2016, (14): 49-51. DOI: 10.7619/jcmp.201614016 |
[10] | HUA li-ming, YANG He-ping, LU Xin-hua, ZHOU Shao-pin. LOGISTIC REGRESSION ANALYSIS ON THE RISK FACTORS FOR NON-DIABETIC CEREBRAL INFARCTION PATIENTS[J]. Journal of Clinical Medicine in Practice, 2005, (3): 67-70. DOI: 10.3969/j.issn.1672-2353.2005.03.023 |
1. |
陈丽云. 高效液相色谱串联质谱法检测精神病患者血清中的多种抗精神病类药物及代谢物的浓度. 北方药学. 2024(07): 4-8 .
![]() | |
2. |
徐佳雯,高青,张斐,张雯,王逸. 高效液相色谱法测定地西泮直肠凝胶有关物质. 实用临床医药杂志. 2024(17): 92-98 .
![]() | |
3. |
王本军,张寒娟,韩文超. 二维液相色谱法测定两性霉素B的血药浓度方法研究. 医药论坛杂志. 2024(20): 2213-2217 .
![]() | |
4. |
陈明,刘真,黄晓舞. 液质联用方法测定抗真菌药物伏立康唑、泊沙康唑及两性霉素B的药物浓度. 武警医学. 2024(12): 1039-1045 .
![]() | |
5. |
纪梅芳,卢桂清. 直接蛋白沉淀-超高效液相色谱法测定氟尿嘧啶血药浓度. 北方药学. 2023(08): 9-11+14 .
![]() |