Citation: | WANG Zhenglin, CHANG Weicai, LIU Xinyu, CHEN Jiawei, LIU Zixiang, ZHOU Shaobo. Role of tumor necrosis factor-α in promoting gallbladder cancer cell proliferation through Wnt/β-catenin signaling pathway[J]. Journal of Clinical Medicine in Practice, 2023, 27(19): 40-45. DOI: 10.7619/jcmp.20230255 |
To investigate the proliferation effect of tumor necrosis factor-α(TNF-α) on gallbladder cancer cell line NOZ through Wnt/β-catenin signaling pathway, and to explore its molecular mechanism.
CCK-8 experiment and growth curve experiment were used to determine the optimal concentration and time of TNF-α on the proliferation of gallbladder cancer cell line NOZ. The effect of TNF-α on cycle of gallbladder cancer cell line NOZ was detected by flow cytometry. Western blot was used to detect the expression of Wnt/β-catenin signaling pathway related genes (β-catenin, c-myc, cyclinD1) in gallbladder cancer cell line NOZ. Proliferation ability of gallbladder cancer cell line NOZ was determined by plate clone formation experiment.
CCK-8 experiment and growth curve experiment showed that the optimal concentration and time of TNF-α on the proliferation of gallbladder cancer cell line NOZ were 20 ng/mL and 48 h; TNF-α decreased the number of cells in G1 phase, increased the proportion of cells in S phase and decreased the proportion of cells in G2 phase under the action of 20 ng/mL (P<0.05). TNF-α can promote the expression of Wnt/β-catenin signaling pathway related genes (β-catenin, c-myc, cyclinD1) in gallbladder cancer cell line NOZ (P<0.05). The number of NOZ clones in gallbladder cancer cell line treated with TNF-α(20 ng/mL) was higher than that in control group (P<0.05).
TNF-α may promote the proliferation of gallbladder cancer cell line NOZ through Wnt/β-catenin signaling pathway.
[1] |
FUKUMURA Y, RONG L, MAIMAITIAILI Y, et al. Precursor lesions of gallbladder carcinoma: disease concept, pathology, and genetics[J]. Diagnostics (Basel), 2022, 12(2): 341. doi: 10.3390/diagnostics12020341
|
[2] |
刘颖斌, 包润发. 腹腔镜胆囊癌外科治疗现状与发展[J]. 中华普外科手术学杂志: 电子版, 2020, 14(3): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHPW202003001.htm
|
[3] |
闻波, 刘子祥, 张子艳, 等. 过表达乙酰肝素酶对胆囊癌细胞增殖及PI3K/AKT信号通路的影响[J]. 实用临床医药杂志, 2022, 26(2): 56-61. doi: 10.7619/jcmp.20213823
|
[4] |
SINGH N, BABY D, RAJGURU J P, et al. Inflammation and cancer[J]. Ann Afr Med, 2019, 18(3): 121-126. doi: 10.4103/aam.aam_56_18
|
[5] |
PERUGORRIA M J, OLAIZOLA P, LABIANO I, et al. Wnt-β-catenin signalling in liver development, health and disease[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 121-136. doi: 10.1038/s41575-018-0075-9
|
[6] |
RING A, KIM Y M, KAHN M. Wnt/catenin signaling in adult stem cell physiology and disease[J]. Stem Cell Rev and Rep, 2014, 10(4): 512-525. doi: 10.1007/s12015-014-9515-2
|
[7] |
SONG F L, YANG Z, LI L, et al. MiR-552-3p promotes malignant progression of gallbladder carcinoma by reactivating the Akt/β-catenin signaling pathway due to inhibition of the tumor suppressor gene RGMA[J]. Ann Transl Med, 2021, 9(17): 1374. doi: 10.21037/atm-21-2013
|
[8] |
LI Y M, ZHANG J Q, MA H Z. Chronic inflammation and gallbladder cancer[J]. Cancer Lett, 2014, 345(2): 242-248. doi: 10.1016/j.canlet.2013.08.034
|
[9] |
COLOTTA F, ALLAVENA P, SICA A, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability[J]. Carcinogenesis, 2009, 30(7): 1073-1081. doi: 10.1093/carcin/bgp127
|
[10] |
CHIBA T, MARUSAWA H, USHIJIMA T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation[J]. Gastroenterology, 2012, 143(3): 550-563. doi: 10.1053/j.gastro.2012.07.009
|
[11] |
HENNIG P, FENINI G, DI FILIPPO M, et al. The pathways underlying the multiple roles of p62 in inflammation and cancer[J]. Biomedicines, 2021, 9(7): 707. doi: 10.3390/biomedicines9070707
|
[12] |
COURTOIS G, GILMORE T D. Mutations in the NF-kappaB signaling pathway: implications for human disease[J]. Oncogene, 2006, 25(51): 6831-6843. doi: 10.1038/sj.onc.1209939
|
[13] |
WANG X J, LIU Z Y. Systematic meta-analysis of genetic variants associated with osteosarcoma susceptibility[J]. Medicine, 2018, 97(38): e12525. doi: 10.1097/MD.0000000000012525
|
[14] |
WANG P, WANG J N, YU M X, et al. Tumor necrosis factor-α T-857C (rs1799724) polymorphism and risk of cancers: a meta-analysis[J]. Dis Markers, 2016, 2016: 1-9.
|
[15] |
CHEN X, LIU R, LIU X M, et al. Protective role of Coxsackie-adenovirus receptor in the pathogenesis of inflammatory bowel diseases[J]. Biomed Res Int, 2018, 2018: 1-11.
|
[16] |
BRAILE M, FIORELLI A, SORRIENTO D, et al. Human lung-resident macrophages express and are targets of thymic stromal lymphopoietin in the tumor microenvironment[J]. Cells, 2021, 10(8): 2012. doi: 10.3390/cells10082012
|
[17] |
GRANTS J M, WEGRZYN J, HUI T, et al. Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice[J]. Blood, 2020, 135(25): 2235-2251. doi: 10.1182/blood.2019003105
|
[18] |
DIXIT R, PANDEY M, TRIPATHI S K, et al. Genetic mutational analysis of β-catenin gene affecting GSK-3β phosphorylation plays a role in gallbladder carcinogenesis: results from a case control study[J]. Cancer Treat Res Commun, 2020, 23: 100173. doi: 10.1016/j.ctarc.2020.100173
|
[19] |
ZHAO H K, WU L, YAN G F, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263.
|
[20] |
MOSCA N, KHOUBAI F Z, FEDOU S, et al. LIM homeobox-2 suppresses hallmarks of adult and pediatric liver cancers by inactivating MAPK/ERK and Wnt/beta-catenin pathways[J]. Liver Cancer, 2022, 11(2): 126-140. doi: 10.1159/000521595
|
[21] |
YUAN D C, TIAN J, FANG X, et al. Epidemiological evidence for associations between genetic variants and osteosarcoma susceptibility: a meta-analysis[J]. Front Oncol, 2022, 12: 912208. doi: 10.3389/fonc.2022.912208
|
[22] |
HE S, TANG S L. WNT/β-catenin signaling in the development of liver cancers[J]. Biomed Pharmacother, 2020, 132: 110851. doi: 10.1016/j.biopha.2020.110851
|
[23] |
YTTERBERG S R, BHATT D L, MIKULS T R, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis[J]. N Engl J Med, 2022, 386(4): 316-326. doi: 10.1056/NEJMoa2109927
|
[24] |
TAN S H, BARKER N. Wnt signaling in adult epithelial stem cells and cancer[J]. Prog Mol Biol Transl Sci, 2018, 153: 21-79.
|
[25] |
仵思凡, 陈家瑞, 焦哲, 等. 从核糖体病角度认识癌症机制的研究进展[J]. 空军军医大学学报, 2023, 44(9): 904-909. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJY202309022.htm
|
[26] |
ZHAO X P, MA L, DAI L, et al. TNF-α promotes the malignant transformation of intestinal stem cells through the NF-κB and Wnt/β-catenin signaling pathways[J]. Oncol Rep, 2020, 44(2): 577-588.
|
[27] |
王郑林, 汤杰, 陈佳伟, 等. 肿瘤坏死因子-α在恶性肿瘤中的作用及意义[J]. 实用临床医药杂志, 2023, 27(4): 138-143. doi: 10.7619/jcmp.20223338
|
1. |
吴艳,相开放. 甲状腺乳头状癌组织中MTAP、SETD2表达水平及其与临床病理特征的关系. 黑龙江医药. 2023(03): 704-706 .
![]() |