CHEN Li, LIU Minna, XI Chunsheng. Advances in N6-methyladenosine RNA methylation modifications in renal fibrosis[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 132-137. DOI: 10.7619/jcmp.20230870
Citation: CHEN Li, LIU Minna, XI Chunsheng. Advances in N6-methyladenosine RNA methylation modifications in renal fibrosis[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 132-137. DOI: 10.7619/jcmp.20230870

Advances in N6-methyladenosine RNA methylation modifications in renal fibrosis

More Information
  • Received Date: March 19, 2023
  • Revised Date: May 21, 2023
  • Available Online: September 03, 2023
  • N6-methyladenosine RNA (m6A) is the most abundant type of post-transcriptional modification in eukaryotic cells. Various RNA types, such as messenger RNA (mRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), microRNA (miRNA) and transfer RNA (tRNA), can undergo m6A methylation modifications. Recently, aberrant m6A methylation modifications have been found to be the trigger of renal fibrosis in kidney diseases, which can promote or inhibit interstitial fibrosis through different targets and signaling pathways, but the exact mechanism needs further investigation. This paper aimed to review the mechanism of m6A methylation modification in renal fibrosis and provide new ideas for the development of new clinical drugs.

  • [1]
    YANG B C, WANG J Q, TAN Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174: 105937. doi: 10.1016/j.phrs.2021.105937
    [2]
    杨相颖, 安宁, 谭耀, 等. 6-甲基腺嘌呤RNA甲基化与眼科疾病的研究进展[J]. 实用临床医药杂志, 2022, 26(13): 139-144. doi: 10.7619/jcmp.20220245
    [3]
    ZHANG H, SHI X R, HUANG T, et al. Dynamic landscape and evolution of m6A methylation in human[J]. Nucleic Acids Res, 2020, 48(11): 6251-6264. doi: 10.1093/nar/gkaa347
    [4]
    SUN T, WU R Y, MING L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. doi: 10.1016/j.biopha.2019.108613
    [5]
    SARIN L P, LEIDEL S A. Modify or die?: RNA modification defects in metazoans[J]. RNA Biol, 2014, 11(12): 1555-1567. doi: 10.4161/15476286.2014.992279
    [6]
    HUANG H L, WENG H Y, CHEN J J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer[J]. Cancer Cell, 2020, 37(3): 270-288. doi: 10.1016/j.ccell.2020.02.004
    [7]
    TANG Y J, CHEN K Q, SONG B W, et al. m6A-atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome[J]. Nucleic Acids Res, 2021, 49(D1): D134-D143. doi: 10.1093/nar/gkaa692
    [8]
    ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. doi: 10.1038/s41580-019-0168-5
    [9]
    XIA C L, WANG J, WU Z Y, et al. METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway[J]. Toxicology, 2021, 462: 152961. doi: 10.1016/j.tox.2021.152961
    [10]
    YANKOVA E, BLACKABY W, ALBERTELLA M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia[J]. Nature, 2021, 593(7860): 597-601. doi: 10.1038/s41586-021-03536-w
    [11]
    WANG F, ZHANG J, LIN X R, et al. METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic eIF4E2[J]. Cell Rep, 2023, 42(3): 112150. doi: 10.1016/j.celrep.2023.112150
    [12]
    WEI-ZHANG, CHEN Y M, ZENG Z P, et al. The novel m6A writer METTL5 as prognostic biomarker probably associating with the regulation of immune microenvironment in kidney cancer[J]. Heliyon, 2022, 8(12): e12078. doi: 10.1016/j.heliyon.2022.e12078
    [13]
    XU K W, MO Y C, LI D, et al. N6-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury[J]. Ther Adv Chronic Dis, 2020, 11: 1-15.
    [14]
    JIANG X L, LIU B Y, NIE Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. doi: 10.1038/s41392-020-00450-x
    [15]
    PRAKOURA N, HADCHOUEL J, CHATZIANTONIOU C. Novel targets for therapy of renal fibrosis[J]. J Histochem Cytochem, 2019, 67(9): 701-715. doi: 10.1369/0022155419849386
    [16]
    杨倩, 张祎凡, 韩致超, 等. 镉暴露大鼠肾脏m6A甲基转移酶的表达及其与微小RNA-21和转化生长因子-β1的关系[J]. 环境与职业医学, 2022, 39(8): 902-907. https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202208010.htm
    [17]
    FENG C X, WANG Z X, LIU C, et al. Integrated bioinformatical analysis, machine learning and in vitro experiment-identified m6A subtype, and predictive drug target signatures for diagnosing renal fibrosis[J]. Front Pharmacol, 2022, 13: 909784. doi: 10.3389/fphar.2022.909784
    [18]
    YANG Y, HSU P J, CHEN Y S, et al. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism[J]. Cell Res, 2018, 28(6): 616-624. doi: 10.1038/s41422-018-0040-8
    [19]
    LIU P H, ZHANG B, CHEN Z, et al. m6A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway[J]. Aging, 2020, 12(6): 5280-5299. doi: 10.18632/aging.102950
    [20]
    SHI S Q, ZHAO L, ZHENG L L. NSD2 is downregulated in T2DM and promotes β cell proliferation and insulin secretion through the transcriptionally regulation of PDX1[J]. Mol Med Report, 2018, 18(3): 3513-3520.
    [21]
    SENGUPTA D, ZENG L Y, LI Y M, et al. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis[J]. Mol Cell, 2021, 81(21): 4481-4492. doi: 10.1016/j.molcel.2021.08.034
    [22]
    TANG W M, ZHAO Y L, ZHANG H, et al. METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy[J]. BMC Nephrol, 2022, 23(1): 124. doi: 10.1186/s12882-022-02753-3
    [23]
    LIU E P, LV L, ZHAN Y H, et al. METTL3/N6-methyladenosine/miR-21-5p promotes obstructive renal fibrosis by regulating inflammation through SPRY1/ERK/NF-κB pathway activation[J]. J Cell Mol Med, 2021, 25(16): 7660-7674. doi: 10.1111/jcmm.16603
    [24]
    ALARCÓN C R, LEE H, GOODARZI H, et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519(7544): 482-485. doi: 10.1038/nature14281
    [25]
    陈静, 张函, 顾玉露, 等. RNA m6A甲基化参与肾脏纤维化进展的实验研究[J]. 临床肾脏病杂志, 2020, 20(12): 992-995. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSB202012012.htm
    [26]
    XU Z X, JIA K Q, WANG H, et al. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease[J]. Cell Death Dis, 2021, 12(1): 32. doi: 10.1038/s41419-020-03312-0
    [27]
    DEWANJEE S, VALLAMKONDU J, KALRA R S, et al. The emerging role of HDACs: pathology and therapeutic targets in diabetes mellitus[J]. Cells, 2021, 10(6): 1340. doi: 10.3390/cells10061340
    [28]
    LIAO Q, DONG Y W, LI B H, et al. Promotion of liver fibrosis by Y-box binding protein 1 via the attenuation of transforming growth factor-beta 3 transcription[J]. Ann Transl Med, 2023, 11(6): 259. doi: 10.21037/atm-23-835
    [29]
    JIA G F, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. doi: 10.1038/nchembio.687
    [30]
    MARCHETTI J, BALBINO K P, HERMSDORFF H H M, et al. Relationship between the FTO genotype and early chronic kidney disease in type 2 diabetes: the mediating role of central obesity, hypertension, and high albuminuria[J]. Lifestyle Genom, 2021, 14(3): 73-80. doi: 10.1159/000516118
    [31]
    SPOTO B, MATTACE-RASO F, SIJBRANDS E, et al. The fat-mass and obesity-associated gene (FTO) predicts mortality in chronic kidney disease of various severity[J]. Nephrol Dial Transplant, 2012, 27(Suppl 4): iv58-iv62.
    [32]
    HUBACEK J A, VIKLICKY O, DLOUHA D, et al. The FTO gene polymorphism is associated with end-stage renal disease: two large independent case-control studies in a general population[J]. Nephrol Dial Transplant, 2012, 27(3): 1030-1035. doi: 10.1093/ndt/gfr418
    [33]
    LI X Y, LI Y Z, WANG Y, et al. The m(6)a demethylase FTO promotes renal epithelial-mesenchymal transition by reducing the m(6)a modification of lncRNA GAS5[J]. Cytokine, 2022, 159: 156000. doi: 10.1016/j.cyto.2022.156000
    [34]
    WANG C Y, LIN TIEN-AN, HO M Y, et al. Regulation of autophagy in leukocytes through RNA N6-adenosine methylation in chronic kidney disease patients[J]. Biochem Biophys Res Commun, 2020, 527(4): 953-959. doi: 10.1016/j.bbrc.2020.04.138
    [35]
    WANG C Y, SHIE S S, TSAI M L, et al. FTO modulates fibrogenic responses in obstructive nephropathy[J]. Sci Rep, 2016, 6: 18874. doi: 10.1038/srep18874
    [36]
    YANG Y J, LI Q M, LING Y, et al. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis[J]. Front Immunol, 2022, 13: 1094556.
    [37]
    NING Y C, CHEN J, SHI Y Q, et al. Genistein ameliorates renal fibrosis through regulation snail via m6A RNA demethylase ALKBH5[J]. Front Pharmacol, 2020, 11: 579265. doi: 10.3389/fphar.2020.579265
    [38]
    CHEN J T, XU C D, YANG K, et al. Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment[J]. Nat Commun, 2023, 14(1): 1161. doi: 10.1038/s41467-023-36747-y
    [39]
    ZHANG T Z, HE X L, CALDWELL L, et al. NUAK1 promotes organ fibrosis via YAP and TGF-β/SMAD signaling[J]. Sci Transl Med, 2022, 14(637): eaaz4028. doi: 10.1126/scitranslmed.aaz4028
    [40]
    XU C H, WANG L, ZHANG Y, et al. Tubule-specific Mst1/2 deficiency induces CKD via YAP and non-YAP mechanisms[J]. J Am Soc Nephrol, 2020, 31(5): 946-961. doi: 10.1681/ASN.2019101052
    [41]
    XING J, HE Y C, WANG K Y, et al. Involvement of YTHDF1 in renal fibrosis progression via up-regulating YAP[J]. FASEB J, 2022, 36(2): e22144.
  • Related Articles

    [1]SHAO Zhongxin, LI Shiying. Effect of propofol regulating macrophage polarization on airway inflammatory response and Toll-like receptor 4-NOD-like receptor protein 3 pathway in mice with bronchial asthma[J]. Journal of Clinical Medicine in Practice, 2025, 29(6): 13-19. DOI: 10.7619/jcmp.20245587
    [2]YU Jingjing, HU Meng, Xierenguli ALIMU, ZHANG Man, QU Jianhua. Experimental study on treatment of relapsed and refractory acute myeloid leukemia with DNA methyltransferase 1 inhibitor combined with extracellular signal-regulated kinase 1, homeodomain-interacting protein kinase 2, and glycogen synthase kinase 3β inhibitors[J]. Journal of Clinical Medicine in Practice, 2025, 29(5): 26-30, 35. DOI: 10.7619/jcmp.20242914
    [3]LIU Xinyan, DONG Liyun, ZHOU Peipei, CHEN Yongxue, WANG Xinbo, SUN Yan. Esketamine improves hypoxic-ischemic myocardial injury in neonatal rats by glycogen synthase kinase-3β/NOD-like receptor thermal protein domain-containing protein 3 pathway[J]. Journal of Clinical Medicine in Practice, 2024, 28(15): 19-25. DOI: 10.7619/jcmp.20240407
    [4]LAN Youling, LI Tianfa, ZHAN Yatong, CHEN Yan'e, GUAN Fuqing, YANG Yang. Effect of adjuvant therapy of Shenfu Injection on NOD-like receptor protein 3/cysteine-aspartic acid-specific protease 1 mediated pyroptosis signaling pathway and inflammatory factor levels in rats with acute myocardial infarction[J]. Journal of Clinical Medicine in Practice, 2024, 28(15): 3-8, 13. DOI: 10.7619/jcmp.20240909
    [5]WU Nan, ZHENG Miaomiao, WANG Xinzhe, ZHU Xiang, TANG Hao. Research progress of protein arginine methyltransferase regulating bone formation and bone healing[J]. Journal of Clinical Medicine in Practice, 2024, 28(5): 126-129, 134. DOI: 10.7619/jcmp.20233520
    [6]Qilimuge, LI Xuelian, JI Qiang. Research progress on relationship between receptor tyrosine kinase-like orphan receptor 1 and signaling pathway of tumor cells[J]. Journal of Clinical Medicine in Practice, 2023, 27(17): 133-139. DOI: 10.7619/jcmp.20231087
    [7]NI Ming, LIU Tingting, WANG Jun, ZOU Xuehong, ZHOU Hongyu, WANG Yan, YU Guimei. Detection of methylation status of death-related protein kinase 1, KLF4 and O6-methylguanine-DNA methyltransferase and their relationships with humanpapillomavirus type 16[J]. Journal of Clinical Medicine in Practice, 2022, 26(8): 117-121. DOI: 10.7619/jcmp.20214540
    [8]XU Dongrui, WANG Xiaolong, MA Wenchao, LIU Tongxiang, DONG Yuanbao, YIN Lijuan. Effect of nucleotide binding oligomerization domain-like receptor protein 3 inflammasome on in-stent restenosis after coronary stent implantation[J]. Journal of Clinical Medicine in Practice, 2021, 25(19): 16-19. DOI: 10.7619/jcmp.20211930
    [9]ZHANG Qi, WANG Zhiqiang, CAI Huarong, JIANG Yuequan. Role of protein arginine methyltransferase 5 in methylthioadenosine phosphorylase deficient malignant pleural mesothelioma[J]. Journal of Clinical Medicine in Practice, 2021, 25(17): 82-87. DOI: 10.7619/jcmp.20212725
    [10]XU Weidong, GU Xiao. Correlation between protein arginine methyltransferase 5 and occurrence, development of bladder cancer[J]. Journal of Clinical Medicine in Practice, 2019, (4): 23-29,33. DOI: 10.7619/jcmp.201904008
  • Cited by

    Periodical cited type(7)

    1. 郭振,胡晓萌,曹海玮,时玉春,黄旭,张冲. 超声联合螺旋CT对小儿髋关节发育异常的诊断价值. 临床医学. 2024(01): 90-92 .
    2. 李凯,夏伊明,单新平,吴鹏,阿尔帕提·努力买买提,石岩. 伊犁地区婴幼儿发育性髋关节发育不良的危险因素分析. 公共卫生与预防医学. 2024(03): 157-160 .
    3. 杨茜,石影,张永花,郑华,张婧洁,刘艳敏. 婴儿发育性髋关节发育不良超声筛查情况及影响因素分析. 兰州大学学报(医学版). 2024(07): 37-42 .
    4. 蔡如意,陈敏. 早产儿髋关节发育不良的临床特征、超声表现及相关因素分析. 转化医学杂志. 2024(05): 696-701 .
    5. 何花,王鑫,林海庆,桂冬冬,孙泉,许子旻. 高频超声在婴幼儿髋关节发育异常早期诊断中的价值分析. 现代诊断与治疗. 2023(08): 1231-1232+1238 .
    6. 弓建志. 临夏0~2岁婴幼儿发育性髋关节发育不良筛查暨影响因素分析. 智慧健康. 2023(26): 52-55 .
    7. 陈浩,孟晓涛,李晓婷,李敏,李洪涛,任超,刘春燕. 包头地区婴幼儿发育性髋关节发育不良的超声动静态法筛查结果分析. 航空航天医学杂志. 2022(11): 1308-1311 .

    Other cited types(1)

Catalog

    Article views (165) PDF downloads (11) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return