Citation: | CHEN Li, LIU Minna, XI Chunsheng. Advances in N6-methyladenosine RNA methylation modifications in renal fibrosis[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 132-137. DOI: 10.7619/jcmp.20230870 |
N6-methyladenosine RNA (m6A) is the most abundant type of post-transcriptional modification in eukaryotic cells. Various RNA types, such as messenger RNA (mRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), microRNA (miRNA) and transfer RNA (tRNA), can undergo m6A methylation modifications. Recently, aberrant m6A methylation modifications have been found to be the trigger of renal fibrosis in kidney diseases, which can promote or inhibit interstitial fibrosis through different targets and signaling pathways, but the exact mechanism needs further investigation. This paper aimed to review the mechanism of m6A methylation modification in renal fibrosis and provide new ideas for the development of new clinical drugs.
[1] |
YANG B C, WANG J Q, TAN Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174: 105937. doi: 10.1016/j.phrs.2021.105937
|
[2] |
杨相颖, 安宁, 谭耀, 等. 6-甲基腺嘌呤RNA甲基化与眼科疾病的研究进展[J]. 实用临床医药杂志, 2022, 26(13): 139-144. doi: 10.7619/jcmp.20220245
|
[3] |
ZHANG H, SHI X R, HUANG T, et al. Dynamic landscape and evolution of m6A methylation in human[J]. Nucleic Acids Res, 2020, 48(11): 6251-6264. doi: 10.1093/nar/gkaa347
|
[4] |
SUN T, WU R Y, MING L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. doi: 10.1016/j.biopha.2019.108613
|
[5] |
SARIN L P, LEIDEL S A. Modify or die?: RNA modification defects in metazoans[J]. RNA Biol, 2014, 11(12): 1555-1567. doi: 10.4161/15476286.2014.992279
|
[6] |
HUANG H L, WENG H Y, CHEN J J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer[J]. Cancer Cell, 2020, 37(3): 270-288. doi: 10.1016/j.ccell.2020.02.004
|
[7] |
TANG Y J, CHEN K Q, SONG B W, et al. m6A-atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome[J]. Nucleic Acids Res, 2021, 49(D1): D134-D143. doi: 10.1093/nar/gkaa692
|
[8] |
ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. doi: 10.1038/s41580-019-0168-5
|
[9] |
XIA C L, WANG J, WU Z Y, et al. METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway[J]. Toxicology, 2021, 462: 152961. doi: 10.1016/j.tox.2021.152961
|
[10] |
YANKOVA E, BLACKABY W, ALBERTELLA M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia[J]. Nature, 2021, 593(7860): 597-601. doi: 10.1038/s41586-021-03536-w
|
[11] |
WANG F, ZHANG J, LIN X R, et al. METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic eIF4E2[J]. Cell Rep, 2023, 42(3): 112150. doi: 10.1016/j.celrep.2023.112150
|
[12] |
WEI-ZHANG, CHEN Y M, ZENG Z P, et al. The novel m6A writer METTL5 as prognostic biomarker probably associating with the regulation of immune microenvironment in kidney cancer[J]. Heliyon, 2022, 8(12): e12078. doi: 10.1016/j.heliyon.2022.e12078
|
[13] |
XU K W, MO Y C, LI D, et al. N6-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury[J]. Ther Adv Chronic Dis, 2020, 11: 1-15.
|
[14] |
JIANG X L, LIU B Y, NIE Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. doi: 10.1038/s41392-020-00450-x
|
[15] |
PRAKOURA N, HADCHOUEL J, CHATZIANTONIOU C. Novel targets for therapy of renal fibrosis[J]. J Histochem Cytochem, 2019, 67(9): 701-715. doi: 10.1369/0022155419849386
|
[16] |
杨倩, 张祎凡, 韩致超, 等. 镉暴露大鼠肾脏m6A甲基转移酶的表达及其与微小RNA-21和转化生长因子-β1的关系[J]. 环境与职业医学, 2022, 39(8): 902-907. https://www.cnki.com.cn/Article/CJFDTOTAL-LDYX202208010.htm
|
[17] |
FENG C X, WANG Z X, LIU C, et al. Integrated bioinformatical analysis, machine learning and in vitro experiment-identified m6A subtype, and predictive drug target signatures for diagnosing renal fibrosis[J]. Front Pharmacol, 2022, 13: 909784. doi: 10.3389/fphar.2022.909784
|
[18] |
YANG Y, HSU P J, CHEN Y S, et al. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism[J]. Cell Res, 2018, 28(6): 616-624. doi: 10.1038/s41422-018-0040-8
|
[19] |
LIU P H, ZHANG B, CHEN Z, et al. m6A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway[J]. Aging, 2020, 12(6): 5280-5299. doi: 10.18632/aging.102950
|
[20] |
SHI S Q, ZHAO L, ZHENG L L. NSD2 is downregulated in T2DM and promotes β cell proliferation and insulin secretion through the transcriptionally regulation of PDX1[J]. Mol Med Report, 2018, 18(3): 3513-3520.
|
[21] |
SENGUPTA D, ZENG L Y, LI Y M, et al. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis[J]. Mol Cell, 2021, 81(21): 4481-4492. doi: 10.1016/j.molcel.2021.08.034
|
[22] |
TANG W M, ZHAO Y L, ZHANG H, et al. METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy[J]. BMC Nephrol, 2022, 23(1): 124. doi: 10.1186/s12882-022-02753-3
|
[23] |
LIU E P, LV L, ZHAN Y H, et al. METTL3/N6-methyladenosine/miR-21-5p promotes obstructive renal fibrosis by regulating inflammation through SPRY1/ERK/NF-κB pathway activation[J]. J Cell Mol Med, 2021, 25(16): 7660-7674. doi: 10.1111/jcmm.16603
|
[24] |
ALARCÓN C R, LEE H, GOODARZI H, et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519(7544): 482-485. doi: 10.1038/nature14281
|
[25] |
陈静, 张函, 顾玉露, 等. RNA m6A甲基化参与肾脏纤维化进展的实验研究[J]. 临床肾脏病杂志, 2020, 20(12): 992-995. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSB202012012.htm
|
[26] |
XU Z X, JIA K Q, WANG H, et al. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease[J]. Cell Death Dis, 2021, 12(1): 32. doi: 10.1038/s41419-020-03312-0
|
[27] |
DEWANJEE S, VALLAMKONDU J, KALRA R S, et al. The emerging role of HDACs: pathology and therapeutic targets in diabetes mellitus[J]. Cells, 2021, 10(6): 1340. doi: 10.3390/cells10061340
|
[28] |
LIAO Q, DONG Y W, LI B H, et al. Promotion of liver fibrosis by Y-box binding protein 1 via the attenuation of transforming growth factor-beta 3 transcription[J]. Ann Transl Med, 2023, 11(6): 259. doi: 10.21037/atm-23-835
|
[29] |
JIA G F, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. doi: 10.1038/nchembio.687
|
[30] |
MARCHETTI J, BALBINO K P, HERMSDORFF H H M, et al. Relationship between the FTO genotype and early chronic kidney disease in type 2 diabetes: the mediating role of central obesity, hypertension, and high albuminuria[J]. Lifestyle Genom, 2021, 14(3): 73-80. doi: 10.1159/000516118
|
[31] |
SPOTO B, MATTACE-RASO F, SIJBRANDS E, et al. The fat-mass and obesity-associated gene (FTO) predicts mortality in chronic kidney disease of various severity[J]. Nephrol Dial Transplant, 2012, 27(Suppl 4): iv58-iv62.
|
[32] |
HUBACEK J A, VIKLICKY O, DLOUHA D, et al. The FTO gene polymorphism is associated with end-stage renal disease: two large independent case-control studies in a general population[J]. Nephrol Dial Transplant, 2012, 27(3): 1030-1035. doi: 10.1093/ndt/gfr418
|
[33] |
LI X Y, LI Y Z, WANG Y, et al. The m(6)a demethylase FTO promotes renal epithelial-mesenchymal transition by reducing the m(6)a modification of lncRNA GAS5[J]. Cytokine, 2022, 159: 156000. doi: 10.1016/j.cyto.2022.156000
|
[34] |
WANG C Y, LIN TIEN-AN, HO M Y, et al. Regulation of autophagy in leukocytes through RNA N6-adenosine methylation in chronic kidney disease patients[J]. Biochem Biophys Res Commun, 2020, 527(4): 953-959. doi: 10.1016/j.bbrc.2020.04.138
|
[35] |
WANG C Y, SHIE S S, TSAI M L, et al. FTO modulates fibrogenic responses in obstructive nephropathy[J]. Sci Rep, 2016, 6: 18874. doi: 10.1038/srep18874
|
[36] |
YANG Y J, LI Q M, LING Y, et al. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis[J]. Front Immunol, 2022, 13: 1094556.
|
[37] |
NING Y C, CHEN J, SHI Y Q, et al. Genistein ameliorates renal fibrosis through regulation snail via m6A RNA demethylase ALKBH5[J]. Front Pharmacol, 2020, 11: 579265. doi: 10.3389/fphar.2020.579265
|
[38] |
CHEN J T, XU C D, YANG K, et al. Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment[J]. Nat Commun, 2023, 14(1): 1161. doi: 10.1038/s41467-023-36747-y
|
[39] |
ZHANG T Z, HE X L, CALDWELL L, et al. NUAK1 promotes organ fibrosis via YAP and TGF-β/SMAD signaling[J]. Sci Transl Med, 2022, 14(637): eaaz4028. doi: 10.1126/scitranslmed.aaz4028
|
[40] |
XU C H, WANG L, ZHANG Y, et al. Tubule-specific Mst1/2 deficiency induces CKD via YAP and non-YAP mechanisms[J]. J Am Soc Nephrol, 2020, 31(5): 946-961. doi: 10.1681/ASN.2019101052
|
[41] |
XING J, HE Y C, WANG K Y, et al. Involvement of YTHDF1 in renal fibrosis progression via up-regulating YAP[J]. FASEB J, 2022, 36(2): e22144.
|