ZUO Shufei, LIANG Shu, QIN Yilu, WU Jie, ZHANG Chao, GUO Zhanfei, BIAN Caiyue, FAN Wenqiang. Effect and mechanism of mircoRNA-6779-5p on chondrocyte injury induced by interleukin-1β[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 69-75, 79. DOI: 10.7619/jcmp.20231173
Citation: ZUO Shufei, LIANG Shu, QIN Yilu, WU Jie, ZHANG Chao, GUO Zhanfei, BIAN Caiyue, FAN Wenqiang. Effect and mechanism of mircoRNA-6779-5p on chondrocyte injury induced by interleukin-1β[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 69-75, 79. DOI: 10.7619/jcmp.20231173

Effect and mechanism of mircoRNA-6779-5p on chondrocyte injury induced by interleukin-1β

More Information
  • Received Date: April 13, 2023
  • Revised Date: June 20, 2023
  • Available Online: July 07, 2023
  • Objective 

    To analyze the effects of microRNA-6779-5p (miR-6779-5p) on cell proliferation and apoptosis in chondrocyte stimulated by interleukin-1β (IL-1β) and the related molecular mechanism.

    Methods 

    Expression level of RNA was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). CHON-001 cells were transfected with miR-6779-5p mimics, overexpression vector of interleukin-1 receptor associated kinase 3 (IRAK3) and their respective controls, and 10 ng/mL IL-1β was used to stimulate the cells. The effects of miR-6779-5p and IRAK3 on cell injury induced by IL-1β were analyzed by functional tests; the nuclear factor kappa B (NF-κB) pathway related protein expression was analyzed by Western blotting; the relationship between miR-6779-5p and IRAK3 was identified.

    Results 

    MiR-6779-5p expression was down-regulated in osteoarthritis patients, while IRAK3 expression was up-regulated (P < 0.05). MiR-6779-5p and IRAK3 expressions also showed the same trend in CHON-001 cells induced by IL-1β at differed concentrations (P < 0.05). IL-1β treatment decreased the activity (100.00% versus 51.00%) and EdU positive rate (43.00% versus 25.00%) of CHON-001 cells but increased cell apoptosis rate (6.43% versus 18.60%) (P < 0.05), however, these effects were alleviated after miR-6779-5p overexpression (cell viability: 52.00% versus 85.00%; the positive rate of EdU: 25.67% versus 38.67%; cell apoptosis rate: 18.70% versus 12.10%, P < 0.05). In addition, miR-6779-5p targeted IRAK3. The up-regulation of IRAK3 expression could reverse the effects of miR-6779-5p overexpression on CHON-001 cells (P < 0.05). Moreover, miR-6779-5p mimics reduced the p-P65-to-P65 ratio (2.06 versus 1.34) and the p-IκBα-to-IκBα ratio (2.42 versus 1.42) in IL-1β-induced chondrocytes (P < 0.05), but IRAK3 overexpression mitigated these effects (p-P65-to-P65 ratio: 1.30 versus 1.88; p-IκBα-to-IκBα ratio: 1.45 versus 2.16, P < 0.05).

    Conclusion 

    MiR-6779-5p can ameliorate chondrocyte injury induced by IL-1β by inhibiting the activation of IRAK3/NF-κB pathway, which suggests that miR-6779-5p might be a potential target for the treatment of osteoarthritis.

  • [1]
    HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759. doi: 10.1016/S0140-6736(19)30417-9
    [2]
    贾笛, 韦佳佳, 段修权, 等. 基于全球视角的中国骨关节炎疾病负担分析[J]. 现代预防医学, 2022, 49(13): 2312-2316. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202213002.htm
    [3]
    KLOPPENBURG M, BERENBAUM F. Osteoarthritis year in review 2019: epidemiology and therapy[J]. Osteoarthritis Cartilage, 2020, 28(3): 242-248. doi: 10.1016/j.joca.2020.01.002
    [4]
    徐黎, 李凯, 过哲, 等. 膝关节骨关节炎全关节磁共振成像评分观察者间一致性评价[J]. 骨科临床与研究杂志, 2021, 6(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GKLC202102009.htm
    [5]
    刘军. 中西医结合治疗膝骨关节炎的优势[J]. 中国中西医结合杂志, 2021, 41(7): 775-777. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ202107002.htm
    [6]
    HILL M, TRAN N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech, 2021, 14(4): dmm047662. doi: 10.1242/dmm.047662
    [7]
    高洁, 娜迪拉, 方志敏. miRNA在急性心肌梗死诊断、治疗及预后中的研究进展[J]. 实用临床医药杂志, 2022, 26(1): 139-142. doi: 10.7619/jcmp.20212567
    [8]
    许晓丹, 汤立军. miRNA与炎性相关疾病[J]. 生命科学, 2016, 28(9): 1039-1043. doi: 10.13376/j.cbls/2016140
    [9]
    WHITEOAK S. The role of microRNAS in inflammatory bowel disease[J]. Int J Biol Sci, 2021, 17(8): 2112-2123. doi: 10.7150/ijbs.59904
    [10]
    张帆, 李思洋, 丁军颖, 等. microRNA在呼吸系统炎性疾病中的研究进展[J]. 中国比较医学杂志, 2021, 31(8): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX202108017.htm
    [11]
    ZHU J J, YANG S H, QI Y D, et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model[J]. Sci Adv, 2022, 8(13): eabk0011. doi: 10.1126/sciadv.abk0011
    [12]
    SHEN S Y, WU Y Z, CHEN J X, et al. CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene[J]. Ann Rheum Dis, 2019, 78(6): 826-836. doi: 10.1136/annrheumdis-2018-214786
    [13]
    李力, 罗晓星. 类风湿关节炎患者关节液中miRNA表达谱研究及其临床意义[J]. 实用临床医药杂志, 2017, 21(13): 51-55. doi: 10.7619/jcmp.201713014
    [14]
    李宁博, 骆晓飞, 尹夏, 等. 杜仲多糖通过抑制NF-kB通路减轻IL-1β诱导的软骨细胞损伤[J]. 中国骨伤, 2022, 35(7): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGU202207017.htm
    [15]
    靳泽怡, 丁彩琳, 于睿, 等. 软骨细胞与间充质干细胞诱导成软骨肥大分化的调控机制及策略[J]. 骨科临床与研究杂志, 2021, 6(5): 313-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GKLC202105012.htm
    [16]
    周亮, 陈兴真, 李振宇, 等. lncRNA HOTAIR在白细胞介素1β介导骨关节炎中的作用机制[J]. 中国组织工程研究, 2022, 26(35): 5607-5613. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202235006.htm
    [17]
    ZHANG J M, HAO X X, CHI R M, et al. Moderate mechanical stress suppresses the IL-1β-induced chondrocyte apoptosis by regulating mitochondrial dynamics[J]. J Cell Physiol, 2021, 236(11): 7504-7515.
    [18]
    GUO X, PAN X Y, WU J H, et al. Calycosin prevents IL-1β-induced articular chondrocyte damage in osteoarthritis through regulating the PI3K/AKT/FoxO1 pathway[J]. In Vitro Cell Dev Biol Anim, 2022, 58(6): 491-502.
    [19]
    YU J Z, QIN Y, ZHOU N X. Knockdown of Circ_SLC39A8 protects against the progression of osteoarthritis by regulating miR-591/IRAK3 axis[J]. J Orthop Surg Res, 2021, 16(1): 170.
    [20]
    VISHNOI A, RANI S. MiRNA biogenesis and regulation of diseases: an overview[J]. Methods Mol Biol, 2017, 1509: 1-10.
    [21]
    MENON A, ABD-AZIZ N, KHALID K, et al. miRNA: a promising therapeutic target in cancer[J]. Int J Mol Sci, 2022, 23(19): 11502.
    [22]
    SWINGLER T E, NIU L, SMITH P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37(5): 40-47.
    [23]
    GHAFOURI-FARD S, POULET C, MALAISE M, et al. The emerging role of non-coding RNAs in osteoarthritis[J]. Front Immunol, 2021, 12: 773171.
    [24]
    ZHANG H J, ZHENG W D, LI D, et al. miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB[J]. Cartilage, 2021, 13(2_suppl): 1467S-1477S.
    [25]
    YANG X Y, LIU Y, ZHOU X H, et al. Circular RNA 0010117 promotes aggressive glioblastoma behavior by regulating the miRNA-6779-5p/SPEN axis[J]. Transl Oncol, 2022, 25: 101515.
    [26]
    KIM S, BAE W J, AHN J M, et al. microRNA signatures associated with lymph node metastasis in intramucosal gastric cancer[J]. Mod Pathol, 2021, 34(3): 672-683.
    [27]
    MADHUMITA M, PAUL S. A review on methods for predicting miRNA-mRNA regulatory modules[J]. J Integr Bioinform, 2022, 19(3): 20200048.
    [28]
    FREIHAT L A, WHEELER J I, WONG A, et al. IRAK3 modulates downstream innate immune signalling through its guanylate cyclase activity[J]. Sci Rep, 2019, 9(1): 15468.
    [29]
    TAO T, ZHANG Y K, WEI H, et al. Downregulation of IRAK3 by miR-33b-3p relieves chondrocyte inflammation and apoptosis in an in vitro osteoarthritis model[J]. Biosci Biotechnol Biochem, 2021, 85(3): 545-552.
    [30]
    ZHOU H, YU M J, FUKUDA K, et al. IRAK-M mediates Toll-like receptor/IL-1R-induced NFκB activation and cytokine production[J]. EMBO J, 2013, 32(4): 583-596.
  • Related Articles

    [1]ZHOU Gaojin, SHANG Liqing, YAN Jun. Molecular mechanism of long non-coding RNA titin antisense RNA 1 regulating microRNA-134-5p/epidermal growth factor receptor axis in breast cancer cell glycolysis[J]. Journal of Clinical Medicine in Practice, 2025, 29(6): 62-68. DOI: 10.7619/jcmp.20244586
    [2]XU Hexi, SONG Hongqi, LIU Dianwen, LIU Shiju, YANG Huiju. Effect of silencing E26 transformation-specific sequence 4 on proliferation and migration of colon cancer cells by inhibiting nuclear factor-κB signaling pathway[J]. Journal of Clinical Medicine in Practice, 2025, 29(2): 38-41,47. DOI: 10.7619/jcmp.20243267
    [3]ZHANG Jing, MAO Ying. Value of combined assessment of serum transforming growth factor-β1, interleukin-6, toll-like receptor-4, and nuclear factor-κb in evaluating the severity of radiation pneumonitis in non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2024, 28(14): 12-17. DOI: 10.7619/jcmp.20234065
    [4]SHEN Yongjing, DU Baojing, SHANG Jingmin, HAN Bing, MIAO Yuanmin. Effect of toll-like receptor 4/nuclear factor κB p65 pathway on liver damage in children with rotavirus enteritis[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 63-66. DOI: 10.7619/jcmp.20240098
    [5]Kabinuer·ALIMASI, CHEN Hailin, Aishanjiang·MUHETAER, Maimaitirexiati·SUPAJI, WU Chunping, Anniwaer·MAIMAITI. Effect of long non-coding RNA SLCO4A1-AS1 targeting microRNA-615-5p on the proliferation, apoptosis and inflammatory factors expression in esophageal cancer cells[J]. Journal of Clinical Medicine in Practice, 2024, 28(1): 13-19. DOI: 10.7619/jcmp.20233173
    [6]QIN Yilu, BIAN Caiyue, ZUO Shufei, WU Jie, LIANG Shu, XU Zhendan, FAN Wenqiang. Effect of microRNA-106a-5p/colony stimulating factor 1 axis on immunoglobulin G induced podocyte injury in patients with lupus nephritis[J]. Journal of Clinical Medicine in Practice, 2023, 27(20): 48-53, 58. DOI: 10.7619/jcmp.20231527
    [7]QIN Lei, QIN Xin. Myeloid differentiation factor 88 regulates the proliferation, migration and invasion of colorectal cancer cells through the nuclear factor-κB/activator protein-1 signaling pathway[J]. Journal of Clinical Medicine in Practice, 2023, 27(14): 40-45. DOI: 10.7619/jcmp.20223737
    [8]BAI Yunyun, CHEN Fuquan, QIAO Yanming. Roles of microRNA-150-5p in inhibiting malignant proliferation of nasopharyngeal carcinoma cells and enhancing radiosensitivity[J]. Journal of Clinical Medicine in Practice, 2023, 27(5): 76-81. DOI: 10.7619/jcmp.20222993
    [9]MO Zhisheng, XU Peiqing, LI Huanyu, HUA Guotian, CHENG Daiwei, HU Ziran. Analysis in mechanism of tradition Chinese medicine for tonifying kidney, activating blood circulation and removing dampness in treatment of knee osteoarthritis based on nuclear factor-κB signal pathway[J]. Journal of Clinical Medicine in Practice, 2022, 26(11): 87-93, 99. DOI: 10.7619/jcmp.20220631
    [10]SHEN Xiaoli, ZHUANG Xueming, QIAN Mengshu, MA Weixiong, CHEN Yueyang, LU Chaoming, FANG Xutao, WANG Shibo. MicroRNA-182-5p regulates the MAPK/NF-κB pathway by targeting MAPK1 to treat acute lung injury[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 79-85. DOI: 10.7619/jcmp.20214224
  • Cited by

    Periodical cited type(27)

    1. 韩维静,赵伟涛,张帅通. 冰冻切片病理诊断在甲状腺微小乳头状癌术中应用体会. 延边大学医学学报. 2025(01): 52-54 .
    2. 余萱玺,龙秀荣,张学平. 术中冰冻切片检查用于甲状腺微小乳头状癌诊断中的准确性分析. 生命科学仪器. 2024(01): 165-167 .
    3. 刘建,张立英,贾兴东,冯艳玉. 甲状腺癌冰冻切片病理不能明确诊断的临床因素分析. 中国现代医生. 2024(18): 38-42 .
    4. 李军,许研,卓倩. 甲状腺微小乳头状癌的术中冰冻病理诊断探讨. 系统医学. 2024(10): 46-48 .
    5. 毛左乾. 术中冰冻切片病理检查诊断甲状腺微小癌的价值分析. 中国社区医师. 2024(16): 86-88 .
    6. 齐彬,栗玉娇,周平安,张翔. 甲状腺微小乳头状癌术中冰冻切片病理诊断准确性分析. 系统医学. 2024(18): 167-169+198 .
    7. 莫林,韩泽贤,欧范妍,梁业志,韦康来. 术中快速冰冻病理切片检查在诊断甲状腺结节中的应用效果. 医药前沿. 2024(20): 47-49 .
    8. 赖丽雅,廖志东,卢裕,郑渝兰,钟伟樑. 甲状腺乳头状增生与甲状腺乳头状癌术中冰冻切片与石蜡切片病理诊断结果的对比分析. 齐齐哈尔医学院学报. 2024(22): 2162-2166 .
    9. 张檑,张玲,王义龙. 病理切片机在甲状腺癌手术患者病理检查中的应用及可信性分析研究. 现代仪器与医疗. 2023(01): 29-32 .
    10. 崔小光,陈昌伟. 冰冻切片对甲状腺微小乳头状癌术中病理诊断的准确性及价值. 中国卫生标准管理. 2023(04): 110-113 .
    11. 王惠国. 甲状腺微小乳头状癌诊断中术中冰冻病理的应用价值体会. 中国实用医药. 2023(09): 96-98 .
    12. 段鸿梅,蔡为民,盛仁明,周燕芳. 术中冰冻病理检查对甲状腺微小乳头状癌诊断的准确率分析. 系统医学. 2023(02): 46-49 .
    13. 罗燕. 冰冻病理技术在甲状腺乳头状癌诊断中的效果分析. 现代诊断与治疗. 2023(11): 1688-1690 .
    14. 杨晓波,李俊,张爱兵. 术中冰冻切片技术诊断甲状腺乳头状癌的价值. 系统医学. 2023(14): 171-173 .
    15. 许研. 甲状腺冰冻与石蜡切片的病理诊断价值观察. 中国医药指南. 2022(04): 74-76+80 .
    16. 刘军. 卵巢肿瘤术中冰冻切片的病理诊断分析及临床价值. 中国卫生标准管理. 2022(03): 183-186 .
    17. 孟峰芳. 甲状腺冰冻切片病理检查在鉴别其良恶性价值中的应用. 中国卫生标准管理. 2022(07): 73-75 .
    18. 王超柱,付冬妍. 冰冻切片对甲状腺微小癌术中病理诊断的准确性及漏诊率、误诊率分析. 中国医药科学. 2022(15): 182-185 .
    19. 李晓,曹卓,李明显,刘红英,黄镇栋,郑广娟,何青莲. 一种生物色标在冰余石蜡制片中的应用体会. 临床与实验病理学杂志. 2022(09): 1141-1142 .
    20. 李明显,周娜,郑细闰,杜晓华,李晓,郑广娟,何青莲,汤丽鹏. 一种红色标签纸在甲状腺小病灶冰冻切片过程中的应用体会. 中国临床解剖学杂志. 2022(06): 748-750 .
    21. 李轩飞,张静文. 术中冰冻切片与术后石蜡切片对PTMC病理诊断的效果分析. 菏泽医学专科学校学报. 2022(04): 26-29+33 .
    22. 徐鹏育. 术中冰冻切片病理诊断甲状腺微小乳头状癌的价值. 临床医学研究与实践. 2022(30): 107-109 .
    23. 陈海敏,江沂,刘婉,江桂英. 甲状腺良恶性鉴别中应用冰冻切片及石蜡切片病理检查的价值. 人人健康. 2021(08): 66-67 .
    24. 成瑶. 术中快速冰冻切片在甲状腺乳头状癌诊断中的应用分析. 临床医学工程. 2021(05): 651-652 .
    25. 杨丽英,闵文,朱杰,谭永兴. 甲状腺微小乳头状癌术中冰冻切片病理诊断的准确性及相关影响因素. 临床医学研究与实践. 2021(31): 36-38 .
    26. 张宏岩. 术中冰冻切片病理诊断在甲状腺微小乳头状癌中的应用价值. 中国实用医药. 2021(31): 202-204 .
    27. 刘爽,宋秀平,周宝华. 甲状腺冰冻切片与石蜡切片的病理诊断价值比较. 当代医学. 2021(34): 143-144 .

    Other cited types(0)

Catalog

    Article views (132) PDF downloads (5) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return