ZUO Shufei, LIANG Shu, QIN Yilu, WU Jie, ZHANG Chao, GUO Zhanfei, BIAN Caiyue, FAN Wenqiang. Effect and mechanism of mircoRNA-6779-5p on chondrocyte injury induced by interleukin-1β[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 69-75, 79. DOI: 10.7619/jcmp.20231173
Citation: ZUO Shufei, LIANG Shu, QIN Yilu, WU Jie, ZHANG Chao, GUO Zhanfei, BIAN Caiyue, FAN Wenqiang. Effect and mechanism of mircoRNA-6779-5p on chondrocyte injury induced by interleukin-1β[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 69-75, 79. DOI: 10.7619/jcmp.20231173

Effect and mechanism of mircoRNA-6779-5p on chondrocyte injury induced by interleukin-1β

More Information
  • Received Date: April 13, 2023
  • Revised Date: June 20, 2023
  • Available Online: July 07, 2023
  • Objective 

    To analyze the effects of microRNA-6779-5p (miR-6779-5p) on cell proliferation and apoptosis in chondrocyte stimulated by interleukin-1β (IL-1β) and the related molecular mechanism.

    Methods 

    Expression level of RNA was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). CHON-001 cells were transfected with miR-6779-5p mimics, overexpression vector of interleukin-1 receptor associated kinase 3 (IRAK3) and their respective controls, and 10 ng/mL IL-1β was used to stimulate the cells. The effects of miR-6779-5p and IRAK3 on cell injury induced by IL-1β were analyzed by functional tests; the nuclear factor kappa B (NF-κB) pathway related protein expression was analyzed by Western blotting; the relationship between miR-6779-5p and IRAK3 was identified.

    Results 

    MiR-6779-5p expression was down-regulated in osteoarthritis patients, while IRAK3 expression was up-regulated (P < 0.05). MiR-6779-5p and IRAK3 expressions also showed the same trend in CHON-001 cells induced by IL-1β at differed concentrations (P < 0.05). IL-1β treatment decreased the activity (100.00% versus 51.00%) and EdU positive rate (43.00% versus 25.00%) of CHON-001 cells but increased cell apoptosis rate (6.43% versus 18.60%) (P < 0.05), however, these effects were alleviated after miR-6779-5p overexpression (cell viability: 52.00% versus 85.00%; the positive rate of EdU: 25.67% versus 38.67%; cell apoptosis rate: 18.70% versus 12.10%, P < 0.05). In addition, miR-6779-5p targeted IRAK3. The up-regulation of IRAK3 expression could reverse the effects of miR-6779-5p overexpression on CHON-001 cells (P < 0.05). Moreover, miR-6779-5p mimics reduced the p-P65-to-P65 ratio (2.06 versus 1.34) and the p-IκBα-to-IκBα ratio (2.42 versus 1.42) in IL-1β-induced chondrocytes (P < 0.05), but IRAK3 overexpression mitigated these effects (p-P65-to-P65 ratio: 1.30 versus 1.88; p-IκBα-to-IκBα ratio: 1.45 versus 2.16, P < 0.05).

    Conclusion 

    MiR-6779-5p can ameliorate chondrocyte injury induced by IL-1β by inhibiting the activation of IRAK3/NF-κB pathway, which suggests that miR-6779-5p might be a potential target for the treatment of osteoarthritis.

  • [1]
    HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759. doi: 10.1016/S0140-6736(19)30417-9
    [2]
    贾笛, 韦佳佳, 段修权, 等. 基于全球视角的中国骨关节炎疾病负担分析[J]. 现代预防医学, 2022, 49(13): 2312-2316. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF202213002.htm
    [3]
    KLOPPENBURG M, BERENBAUM F. Osteoarthritis year in review 2019: epidemiology and therapy[J]. Osteoarthritis Cartilage, 2020, 28(3): 242-248. doi: 10.1016/j.joca.2020.01.002
    [4]
    徐黎, 李凯, 过哲, 等. 膝关节骨关节炎全关节磁共振成像评分观察者间一致性评价[J]. 骨科临床与研究杂志, 2021, 6(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GKLC202102009.htm
    [5]
    刘军. 中西医结合治疗膝骨关节炎的优势[J]. 中国中西医结合杂志, 2021, 41(7): 775-777. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ202107002.htm
    [6]
    HILL M, TRAN N. miRNA interplay: mechanisms and consequences in cancer[J]. Dis Model Mech, 2021, 14(4): dmm047662. doi: 10.1242/dmm.047662
    [7]
    高洁, 娜迪拉, 方志敏. miRNA在急性心肌梗死诊断、治疗及预后中的研究进展[J]. 实用临床医药杂志, 2022, 26(1): 139-142. doi: 10.7619/jcmp.20212567
    [8]
    许晓丹, 汤立军. miRNA与炎性相关疾病[J]. 生命科学, 2016, 28(9): 1039-1043. doi: 10.13376/j.cbls/2016140
    [9]
    WHITEOAK S. The role of microRNAS in inflammatory bowel disease[J]. Int J Biol Sci, 2021, 17(8): 2112-2123. doi: 10.7150/ijbs.59904
    [10]
    张帆, 李思洋, 丁军颖, 等. microRNA在呼吸系统炎性疾病中的研究进展[J]. 中国比较医学杂志, 2021, 31(8): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX202108017.htm
    [11]
    ZHU J J, YANG S H, QI Y D, et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model[J]. Sci Adv, 2022, 8(13): eabk0011. doi: 10.1126/sciadv.abk0011
    [12]
    SHEN S Y, WU Y Z, CHEN J X, et al. CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene[J]. Ann Rheum Dis, 2019, 78(6): 826-836. doi: 10.1136/annrheumdis-2018-214786
    [13]
    李力, 罗晓星. 类风湿关节炎患者关节液中miRNA表达谱研究及其临床意义[J]. 实用临床医药杂志, 2017, 21(13): 51-55. doi: 10.7619/jcmp.201713014
    [14]
    李宁博, 骆晓飞, 尹夏, 等. 杜仲多糖通过抑制NF-kB通路减轻IL-1β诱导的软骨细胞损伤[J]. 中国骨伤, 2022, 35(7): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGU202207017.htm
    [15]
    靳泽怡, 丁彩琳, 于睿, 等. 软骨细胞与间充质干细胞诱导成软骨肥大分化的调控机制及策略[J]. 骨科临床与研究杂志, 2021, 6(5): 313-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GKLC202105012.htm
    [16]
    周亮, 陈兴真, 李振宇, 等. lncRNA HOTAIR在白细胞介素1β介导骨关节炎中的作用机制[J]. 中国组织工程研究, 2022, 26(35): 5607-5613. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202235006.htm
    [17]
    ZHANG J M, HAO X X, CHI R M, et al. Moderate mechanical stress suppresses the IL-1β-induced chondrocyte apoptosis by regulating mitochondrial dynamics[J]. J Cell Physiol, 2021, 236(11): 7504-7515.
    [18]
    GUO X, PAN X Y, WU J H, et al. Calycosin prevents IL-1β-induced articular chondrocyte damage in osteoarthritis through regulating the PI3K/AKT/FoxO1 pathway[J]. In Vitro Cell Dev Biol Anim, 2022, 58(6): 491-502.
    [19]
    YU J Z, QIN Y, ZHOU N X. Knockdown of Circ_SLC39A8 protects against the progression of osteoarthritis by regulating miR-591/IRAK3 axis[J]. J Orthop Surg Res, 2021, 16(1): 170.
    [20]
    VISHNOI A, RANI S. MiRNA biogenesis and regulation of diseases: an overview[J]. Methods Mol Biol, 2017, 1509: 1-10.
    [21]
    MENON A, ABD-AZIZ N, KHALID K, et al. miRNA: a promising therapeutic target in cancer[J]. Int J Mol Sci, 2022, 23(19): 11502.
    [22]
    SWINGLER T E, NIU L, SMITH P, et al. The function of microRNAs in cartilage and osteoarthritis[J]. Clin Exp Rheumatol, 2019, 37(5): 40-47.
    [23]
    GHAFOURI-FARD S, POULET C, MALAISE M, et al. The emerging role of non-coding RNAs in osteoarthritis[J]. Front Immunol, 2021, 12: 773171.
    [24]
    ZHANG H J, ZHENG W D, LI D, et al. miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB[J]. Cartilage, 2021, 13(2_suppl): 1467S-1477S.
    [25]
    YANG X Y, LIU Y, ZHOU X H, et al. Circular RNA 0010117 promotes aggressive glioblastoma behavior by regulating the miRNA-6779-5p/SPEN axis[J]. Transl Oncol, 2022, 25: 101515.
    [26]
    KIM S, BAE W J, AHN J M, et al. microRNA signatures associated with lymph node metastasis in intramucosal gastric cancer[J]. Mod Pathol, 2021, 34(3): 672-683.
    [27]
    MADHUMITA M, PAUL S. A review on methods for predicting miRNA-mRNA regulatory modules[J]. J Integr Bioinform, 2022, 19(3): 20200048.
    [28]
    FREIHAT L A, WHEELER J I, WONG A, et al. IRAK3 modulates downstream innate immune signalling through its guanylate cyclase activity[J]. Sci Rep, 2019, 9(1): 15468.
    [29]
    TAO T, ZHANG Y K, WEI H, et al. Downregulation of IRAK3 by miR-33b-3p relieves chondrocyte inflammation and apoptosis in an in vitro osteoarthritis model[J]. Biosci Biotechnol Biochem, 2021, 85(3): 545-552.
    [30]
    ZHOU H, YU M J, FUKUDA K, et al. IRAK-M mediates Toll-like receptor/IL-1R-induced NFκB activation and cytokine production[J]. EMBO J, 2013, 32(4): 583-596.
  • Related Articles

    [1]MAO Tingting, JIANG Qiong, WANG Yan, MING Xia, LOU Yinghua. Correlations of serum transforming growth factor-β1 and insulin-like growth factor-1 with pathological features and postoperative recurrence in patients with adenomyosis[J]. Journal of Clinical Medicine in Practice, 2025, 29(4): 103-107. DOI: 10.7619/jcmp.20243572
    [2]HOU Guoqing, YUE Hailong, CHANG Qian, MA Juntao. Effect of dexmedetomidine on epidural fibrosis afterspinal surgery in rats via the transforming growth factor-β1 pathway[J]. Journal of Clinical Medicine in Practice, 2025, 29(1): 77-82. DOI: 10.7619/jcmp.20243181
    [3]RAN Qian, FAN Chonggui, MA Weifeng, LI Shuaiqi. Associations of serum transforming growth factor-β1 and klotho expression levels with disease severity and cognitive function in patients with epilepsy[J]. Journal of Clinical Medicine in Practice, 2025, 29(1): 56-60. DOI: 10.7619/jcmp.20241976
    [4]ZHANG Jing, MAO Ying. Value of combined assessment of serum transforming growth factor-β1, interleukin-6, toll-like receptor-4, and nuclear factor-κb in evaluating the severity of radiation pneumonitis in non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2024, 28(14): 12-17. DOI: 10.7619/jcmp.20234065
    [5]MENG Lijun, GUO Xiaohe, DONG Daiyuan, YANG Yan, XUE Yaofeng, ZHOU Baolin, QIN Yongmei. Effect of thalidomide combined with infliximab in treatment of refractory inflammatory bowel disease and its effects on insulin-like growth factor-1 and transforming growth factor-β1[J]. Journal of Clinical Medicine in Practice, 2024, 28(1): 68-72, 77. DOI: 10.7619/jcmp.20230274
    [6]ZHUANG Lixia, ZHANG Jie, CHEN Peixin. Application value of serum transforming growth factor-β1 and alkaline phosphatase in diagnosing severe neonatal necrotizing enterocolitis[J]. Journal of Clinical Medicine in Practice, 2023, 27(19): 67-70. DOI: 10.7619/jcmp.20232084
    [7]SHEN Yuguo, CHEN Qian. Influence of jinshi nephritis pills on gamma-glutamyl transpeptidase, homocysteine, transforming growth factor-β1 and cystatin C levels in diabetic nephropathy patients[J]. Journal of Clinical Medicine in Practice, 2017, (15): 37-40. DOI: 10.7619/jcmp.201715010
    [8]LI Hehua, LI Tong, SONG Zhixiu. Influence of transforming growth factor-β1 on expression of connective tissue growth factor in astrocytes in neonatal rat[J]. Journal of Clinical Medicine in Practice, 2015, (9): 5-8. DOI: 10.7619/jcmp.201509002
    [9]LIU Yulei, YANG Dongsheng. Expression levels and significance of EGF,TGF-β1 of skin mesenchymal stem cells in patients with psoriasis[J]. Journal of Clinical Medicine in Practice, 2014, (16): 78-80,84. DOI: 10.7619/jcmp.201416022
    [10]ZHU Chun, HUANG Haidong, WANG Lirui, GUO Zhiyong. Influence of heme oxygenase-1 on expressions of transforming growth factor-β1 and fibronectin in peritoneal mesothelial cells of rats induced by high glucose[J]. Journal of Clinical Medicine in Practice, 2014, (1): 1-4. DOI: 10.7619/jcmp.201401001
  • Cited by

    Periodical cited type(59)

    1. 胡艳,万德仁,黄丽红. 电针联合穴位敷贴在精神分裂症残留阴性症状患者中的应用. 光明中医. 2024(03): 553-556 .
    2. 谢滨浩,朱婕,梁睿. 松弛疗法对精神分裂症住院患者的疗效分析. 心理月刊. 2024(19): 120-122 .
    3. 徐孝荣,张娇娇. 齐拉西酮与奥氮平治疗精神分裂症的疗效及其对患者糖、脂代谢影响的比较. 现代医学与健康研究电子杂志. 2023(21): 7-9 .
    4. 郭辉. 齐拉西酮和奥氮平治疗老年精神分裂症患者的效果及对机体糖脂代谢的影响. 当代医学. 2022(03): 53-55 .
    5. 孙磊,罗国帅,陈清刚. 布南色林与利培酮对首发精神分裂症患者认知功能、泌乳素和血脂的影响研究. 中国慢性病预防与控制. 2022(03): 214-217 .
    6. 冯健超,杨国瑛. 利培酮联合氯氮平治疗难治性精神分裂症的临床疗效. 临床合理用药杂志. 2022(07): 11-13 .
    7. 裴建琴,张艳,陆江波,张洁,姚梦洁,代金枝,钱维. 团体感觉运动训练对老年精神分裂症患者认知功能、阴性症状的干预效果研究. 军事护理. 2022(09): 13-16 .
    8. 白瑜,王晓东. 无抽搐电休克辅助齐拉西酮对精神分裂症患者多导睡眠图参数及血清SHBG、DHEA-S、GAP-43水平的影响. 临床医学研究与实践. 2022(27): 42-45+53 .
    9. 王政,邵宝富,王超. 奥氮平治疗精神分裂症患者DTI研究. 医学影像学杂志. 2022(10): 1658-1661 .
    10. 王佳琪,佘继林. 捏脊配合杵针对多发性抽动症患儿症状积分及血清兴奋性氨基酸水平的影响观察. 四川中医. 2022(11): 217-220 .
    11. 李雪冰. 齐拉西酮联合奥氮平对老年精神分裂症患者血糖及TC、TG、LDL-C水平的影响. 现代医学与健康研究电子杂志. 2021(02): 3-5 .
    12. 何磊,韩香平,张彦旭,刘莉,马晓亮. 舍曲林联合阿立哌唑治疗精神分裂症后抑郁的临床效果. 河南医学研究. 2021(04): 717-719 .
    13. 曹保瑞,陈家民,马庆. 齐拉西酮联合奥氮平治疗难治性精神分裂症的效果及安全性. 中国当代医药. 2021(10): 113-116 .
    14. 苏玉晨. 补阳还五汤联合奥氮平对精神分裂症症状及NRG1、IL-2水平影响. 中华中医药学刊. 2021(06): 160-162 .
    15. 孟肖婷. 文拉法辛与艾司西酞普兰对抑郁症的控制效果和安全性对比. 中国卫生工程学. 2021(03): 493-495 .
    16. 尚旭立. 齐拉西酮对首发青少年精神分裂症患者认知功能及脑灰质结构的影响. 医药论坛杂志. 2021(14): 104-107 .
    17. 周显华,陈娟红,曾祥林. 奥氮平联合阿立哌唑治疗精神分裂症伴攻击行为的临床观察. 江西医药. 2021(09): 1488-1490 .
    18. 李雪冰. 阿立哌唑与齐拉西酮治疗首发精神分裂症的临床疗效与安全性对比研究. 中国药物与临床. 2021(21): 3596-3598 .
    19. 冯新梅. 奥氮平治疗精神分裂症对患者症状、安全性评分及相关血清因子的影响. 临床荟萃. 2021(12): 1114-1117 .
    20. 刘冠军,张进周. 喹硫平联合认知行为疗法治疗精神分裂症对照研究. 临床心身疾病杂志. 2021(04): 24-26+38 .
    21. 马立强. 文拉法辛联合小剂量氯氮平对难治性精神分裂症患者的疗效及认知及社会功能影响. 当代医学. 2020(07): 129-130 .
    22. 魏学萍. 精神分裂症急性激越症状的急诊药物治疗方法分析. 中国处方药. 2020(02): 89-90 .
    23. 燕银枝,孙洪波. 精神分裂症采用齐拉西酮联合疏肝解郁胶囊治疗的观察. 中国医药科学. 2020(07): 72-74 .
    24. 王小军,张群. 奥氮平与氯丙嗪对慢性精神分裂症患者近期疗效及认知功能的对比分析. 中国药物与临床. 2020(07): 1110-1112 .
    25. 廉燕. 齐拉西酮联合奥氮平对女性首发精神分裂症患者激越及睡眠质量的影响评价. 世界睡眠医学杂志. 2020(05): 911-912 .
    26. 陈琳. 利培酮联合阿立哌唑治疗对精神分裂症患者的有效性及对认知功能的影响. 中国健康心理学杂志. 2020(09): 1289-1292 .
    27. 成加林,牛军涛,何杰,陈财德,周碧海,许晴丽. 齐拉西酮联合改良电休克治疗首发精神分裂症患者的疗效及对血清p-mTOR和IL-18水平的影响. 中国现代医学杂志. 2020(17): 72-76 .
    28. 杜菊梅,阮俊,石晶,黄杨梅,杨寅,朱大凤. 麦芽对药源性血清泌乳素升高及代谢综合征疗效的临床研究. 中外医学研究. 2020(24): 137-139 .
    29. 王雅辞,闫冰雪,关馨瑶. 时间护理对精神分裂症患者危险行为及精神症状的影响. 中华现代护理杂志. 2020(22): 3037-3040 .
    30. 陈慧,郭晓静. 奥氮平联合喹硫平治疗精神分裂症的Meta分析. 中国卫生标准管理. 2020(22): 104-108 .
    31. 陈旋,李宁,高海燕. 帕利哌酮与氨磺必利对首发精神分裂症的疗效及对记忆、认知功能及心律的影响. 神经损伤与功能重建. 2020(12): 759-760 .
    32. 曹书改. 精神分裂症患者盐酸齐拉西酮胶囊治疗期间护理措施及效果. 山西医药杂志. 2020(24): 3533-3535 .
    33. 张德源,谭家蓉,向燕卿. 帕罗西汀联合心理治疗对女性围绝经期情绪障碍、睡眠质量及血清性激素水平的影响. 解放军医药杂志. 2019(01): 74-78 .
    34. 柴建军. 精神分裂症的临床诊治与疗效. 世界最新医学信息文摘. 2019(07): 85-86 .
    35. 丁慧琴,娄渊敏,李海根. 延伸性护理对精神分裂症患者危险行为、精神症状及自我管理的影响. 现代医药卫生. 2019(05): 760-762 .
    36. 张飞龙. 奥氮平与齐拉西酮联合改良型电休克治疗首发精神分裂症应用对比研究. 淮海医药. 2019(03): 297-299 .
    37. 杜菊梅,石晶,徐璐,黄杨梅,常沛沛,徐止浩. 运动疗法配合心理干预对康复期精神分裂症患者病耻感、社会功能及生活质量的影响. 中国健康心理学杂志. 2019(07): 991-996 .
    38. 宋籽良,宋清海,郑昌江. 奥氮平联合焦点解决式健康指导对精神分裂症患者病情及社会认知的影响. 广东医学. 2019(11): 1608-1612 .
    39. 肖建新,胡民,王金钱. 导痰汤加减联合利培酮治疗精神分裂症的临床疗效观察. 北方药学. 2019(07): 22-23 .
    40. 李春娟. 奥氮平联合丁螺环酮治疗精神分裂症阴性症状的疗效及安全性. 中国处方药. 2019(07): 94-95 .
    41. 付飞,陈汉波. 奥氮平联合齐拉西酮对老年重度精神分裂症患者血清学指标和认知功能的影响探讨. 中国医学创新. 2019(24): 32-35 .
    42. 张恒. 奥氮平联合利培酮对改善老年痴呆患者精神行为症状的效果. 临床医学研究与实践. 2019(26): 45-47 .
    43. 焦秀娟,徐东. 帕利哌酮联合经颅磁刺激治疗难治性精神分裂症效果观察. 医药论坛杂志. 2019(09): 22-24 .
    44. 费沛. 奥氮平与氟哌啶醇治疗精神分裂症的效果比较及对血清炎症因子的影响. 实用医药杂志. 2019(11): 997-1000 .
    45. 高章代,戚莉君,薛林霞,吴彬,刘强. 口服盐酸曲唑酮辅助治疗脑卒中后抑郁的疗效研究. 检验医学与临床. 2019(23): 3525-3528 .
    46. 张航雷. 高频rTMS联合氨磺必利治疗精神分裂症阴性症状患者临床研究. 医药论坛杂志. 2019(11): 133-136 .
    47. 姚永新,王年美,邢晓华. 小儿多发性抽动症临床特征及发病因素调查. 中国妇幼保健. 2019(23): 5511-5513 .
    48. 刘丹,李健,陈薇,程亮,刘树利,户文娟,刘文芳. 养血清脑颗粒联合米氮平治疗脑卒中后抑郁伴失眠的临床观察. 湖南中医药大学学报. 2018(05): 582-585 .
    49. 陈登霞,潘竹松. 齐拉西酮与氯丙嗪治疗精神分裂症的疗效比较研究及其对患者心电图的影响. 临床合理用药杂志. 2018(12): 5-6 .
    50. 常凤坤,王会娟. 齐拉西酮针剂序贯口服胶囊治疗精神分裂症激越症的效果及安全性评价. 临床医学工程. 2018(06): 777-778 .
    51. 陈文婷,何海荣. 齐拉西酮和利培酮治疗精神分裂症的临床疗效及安全性. 药品评价. 2018(06): 61-64 .
    52. 何晓燕. 奥氮平对精神分裂症患者肝功能、血糖、血脂水平的影响. 中国民康医学. 2018(15): 69-70 .
    53. 续慧蕾,刘勇,蒋茜,杜秋蓉. 用齐拉西酮与奥氮平对首发精神分裂症患者进行治疗的效果探讨. 当代医药论丛. 2018(19): 153-154 .
    54. 陈明森,周春闽. 齐拉西酮与奥氮平治疗老年精神分裂症疗效及对血糖、血脂水平的影响分析. 糖尿病新世界. 2018(20): 56-58 .
    55. 庄艳云,吕霞,陈言钊,周克英. 氟哌啶醇治疗伴脑电图异常小儿多发性抽动症疗效观察. 国际神经病学神经外科学杂志. 2018(06): 556-559 .
    56. 洪二郎,常凤坤. 齐拉西酮胶囊联合奥氮平治疗高龄精神分裂症患者疗效及对精神症状、糖脂代谢和BMI的影响. 中国医药科学. 2018(24): 38-40+68 .
    57. 曹宏波,崔林梅,黄自州,牟洋. 齐拉西酮联合无抽搐电休克治疗精神分裂症的血清指标及电生理特征评价. 海南医学院学报. 2017(06): 847-850+854 .
    58. 华浩水,陆源昕,邵剑锋. 阿立哌唑联合齐拉西酮治疗精神分裂症患者的临床效果分析. 现代实用医学. 2017(05): 669-670 .
    59. 唐芸. 盐酸美金刚片联合多奈哌齐治疗老年痴呆的临床疗效观察. 中国现代医生. 2017(35): 111-113 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(68)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return