Citation: | WANG Tianwei, TANG Chengbin, JIANG Wei, YU Hailong, SHAO Jun, YUAN Jing. Research progress on early biomarkers of cardiac surgery-associated acute kidney injury[J]. Journal of Clinical Medicine in Practice, 2024, 28(3): 131-139, 143. DOI: 10.7619/jcmp.20232815 |
Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious complication following cardiac surgical procedures. The conventional diagnostic methods relying on serum creatinine and urine output changes often exhibit delayed responsiveness. Therefore, there is an urgent need for highly sensitive and specific biomarkers to detect and identify high-risk patients with CSA-AKI at an early stage, allowing for timely intervention and improved clinical outcomes. In this paper, the relevant biomarkers of CSA-AKI were reviewed in order to provide valuable information for the subsequent research on CSA-AKI.
[1] |
OLOWU W A, NIANG A, OSAFO C, et al. Outcomes of acute kidney injury in children and adults in sub-Saharan Africa: a systematic review[J]. Lancet Glob Health, 2016, 4(4): e242-e250. doi: 10.1016/S2214-109X(15)00322-8
|
[2] |
吴彬彬. 术前纤维蛋白原对心脏瓣膜置换术后急性肾损伤的影响[D]. 杭州: 浙江大学, 2020.
|
[3] |
SRIVASTAVA V, D'SILVA C, TANG A, et al. The impact of major perioperative renal insult on long-term renal function and survival after cardiac surgery[J]. Interact Cardiovasc Thorac Surg, 2012, 15(1): 14-17. doi: 10.1093/icvts/ivs106
|
[4] |
SCHURLE A, KOYNER J L. CSA-AKI: incidence, epidemiology, clinical outcomes, and economic impact[J]. J Clin Med, 2021, 10(24): 5746. doi: 10.3390/jcm10245746
|
[5] |
KELLUM J A, PROWLE J R. Paradigms of acute kidney injury in the intensive care setting[J]. Nat Rev Nephrol, 2018, 14(4): 217-230. doi: 10.1038/nrneph.2017.184
|
[6] |
喻卓. 体外循环术后急性肾损伤进展至慢性肾脏病的风险因素分析[D]. 广州: 南方医科大学, 2022.
|
[7] |
FUHRMAN D Y, KELLUM J A. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury[J]. Curr Opin Anaesthesiol, 2017, 30(1): 60-65. doi: 10.1097/ACO.0000000000000412
|
[8] |
YANG Y L, MA J, ZHAO L Y. High central venous pressure is associated with acute kidney injury and mortality in patients underwent cardiopulmonary bypass surgery[J]. J Crit Care, 2018, 48: 211-215. doi: 10.1016/j.jcrc.2018.08.034
|
[9] |
BAINES C P. The mitochondrial permeability transition pore and ischemia-reperfusion injury[J]. Basic Res Cardiol, 2009, 104(2): 181-188. doi: 10.1007/s00395-009-0004-8
|
[10] |
SU L J, ZHANG J H, GOMEZ H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414. doi: 10.1080/15548627.2022.2084862
|
[11] |
KIRKLIN J K, WESTABY S, BLACKSTONE E H, et al. Complement and the damaging effects of cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 1983, 86(6): 845-857. doi: 10.1016/S0022-5223(19)39061-0
|
[12] |
ASIMAKOPOULOS G, TAYLOR K M. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules[J]. Ann Thorac Surg, 1998, 66(6): 2135-2144. doi: 10.1016/S0003-4975(98)00727-9
|
[13] |
BONVENTRE J V, YANG L. Cellular pathophysiology of ischemic acute kidney injury[J]. J Clin Invest, 2011, 121(11): 4210-4221. doi: 10.1172/JCI45161
|
[14] |
HAN S J, LEE H T. Mechanisms and therapeutic targets of ischemic acute kidney injury[J]. Kidney Res Clin Pract, 2019, 38(4): 427-440. doi: 10.23876/j.krcp.19.062
|
[15] |
LE DORZE M, LEGRAND M, PAYEN D, et al. The role of the microcirculation in acute kidney injury[J]. Curr Opin Crit Care, 2009, 15(6): 503-508. doi: 10.1097/MCC.0b013e328332f6cf
|
[16] |
ALI F, SULTANA S. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays[J]. Mol Cell Biochem, 2012, 360(1/2): 133-145.
|
[17] |
MOAT N E, EVANS T E, QUINLAN G J, et al. Chelatable iron and copper can be released from extracorporeally circulated blood during cardiopulmonary bypass[J]. FEBS Lett, 1993, 328(1/2): 103-106.
|
[18] |
HAASE M, BELLOMO R, HAASE-FIELITZ A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury[J]. J Am Coll Cardiol, 2010, 55(19): 2024-2033. doi: 10.1016/j.jacc.2009.12.046
|
[19] |
KHWAJA A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): c179-c184. doi: 10.1159/000339789
|
[20] |
SHANG W J, WANG Z G. The update of NGAL in acute kidney injury[J]. Curr Protein Pept Sci, 2017, 18(12): 1211-1217.
|
[21] |
CHEW S T H, HWANG N C. Acute kidney injury after cardiac surgery: a narrative review of the literature[J]. J Cardiothorac Vasc Anesth, 2019, 33(4): 1122-1138. doi: 10.1053/j.jvca.2018.08.003
|
[22] |
MISHRA J, DENT C, TARABISHI R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery[J]. Lancet, 2005, 365(9466): 1231-1238. doi: 10.1016/S0140-6736(05)74811-X
|
[23] |
MOSTAFA E A, SHAHIN K M, EL MIDANY A A H, et al. Validation of cardiac surgery-associated neutrophil gelatinase-associated lipocalin score for prediction of cardiac surgery-associated acute kidney injury[J]. Heart Lung Circ, 2022, 31(2): 272-277. doi: 10.1016/j.hlc.2021.05.084
|
[24] |
SKRYPNYK N I, GIST K M, OKAMURA K, et al. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase-associated lipocalin during acute kidney injury[J]. Kidney Int, 2020, 97(5): 966-979. doi: 10.1016/j.kint.2019.11.013
|
[25] |
MORIYAMA T, HAGIHARA S, SHIRAMOMO T, et al. Comparison of three early biomarkers for acute kidney injury after cardiac surgery under cardiopulmonary bypass[J]. J Intensive Care, 2016, 4: 41. doi: 10.1186/s40560-016-0164-1
|
[26] |
SLAGLE C L, GOLDSTEIN S L, GAVIGAN H W, et al. Association between elevated urine neutrophil gelatinase-associated lipocalin and postoperative acute kidney injury in neonates[J]. J Pediatr, 2021, 238: 193-201, e2. doi: 10.1016/j.jpeds.2021.07.041
|
[27] |
MEERSCH M, SCHMIDT C, VAN AKEN H, et al. Urinary TIMP-2 and IGFBP-7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery[J]. PLoS One, 2014, 9(3): e93460. doi: 10.1371/journal.pone.0093460
|
[28] |
GRIESHABER P, MÖLLER S, ARNETH B, et al. Predicting cardiac surgery-associated acute kidney injury using a combination of clinical risk scores and urinary biomarkers[J]. Thorac Cardiovasc Surg, 2020, 68(5): 389-400. doi: 10.1055/s-0039-1678565
|
[29] |
CAI J R, JIAO X Y, LUO W L, et al. Kidney injury molecule-1 expression predicts structural damage and outcome in histological acute tubular injury[J]. Ren Fail, 2019, 41(1): 80-87. doi: 10.1080/0886022X.2019.1578234
|
[30] |
CUMMINGS J J, SHAW A D, SHI J, et al. Intraoperative prediction of cardiac surgery-associated acute kidney injury using urinary biomarkers of cell cycle arrest[J]. J Thorac Cardiovasc Surg, 2019, 157(4): 1545-1553, e5. doi: 10.1016/j.jtcvs.2018.08.090
|
[31] |
KASHANI K, CHEUNGPASITPORN W, RONCO C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption[J]. Clin Chem Lab Med, 2017, 55(8): 1074-1089. doi: 10.1515/cclm-2016-0973
|
[32] |
吴彬彬, 杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报: 医学版, 2019, 48(2): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYB201902022.htm
|
[33] |
KHAN M B, NASEEM T, WAZIR H D, et al. Association of liver fatty acid binding protein with acute kidney injury in paediatric patients after cardiac surgery[J]. J Ayub Med Coll Abbottabad, 2022, 34(Suppl 1)(3): S602-S607.
|
[34] |
HISHIKARI K, HIKITA H, NAKAMURA S, et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of acute kidney injury in patients with acute decompensated heart failure[J]. Cardiorenal Med, 2017, 7(4): 267-275. doi: 10.1159/000476002
|
[35] |
HAN W K, WAIKAR S S, JOHNSON A, et al. Urinary biomarkers in the early diagnosis of acute kidney injury[J]. Kidney Int, 2008, 73(7): 863-869. doi: 10.1038/sj.ki.5002715
|
[36] |
GENG J W, QIU Y X, QIN Z, et al. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis[J]. J Transl Med, 2021, 19(1): 105. doi: 10.1186/s12967-021-02776-8
|
[37] |
SCHUNK S J, ZARBOCK A, MEERSCH M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study[J]. Lancet, 2019, 394(10197): 488-496. doi: 10.1016/S0140-6736(19)30769-X
|
[38] |
DENNING G M, ACKERMANN L W, BARNA T J, et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues[J]. Peptides, 2008, 29(1): 83-92. doi: 10.1016/j.peptides.2007.11.004
|
[39] |
BEUNDERS R, VAN GROENENDAEL R, LEIJTE G P, et al. Proenkephalin compared to conventional methods to assess kidney function in critically ill sepsis patients[J]. Shock, 2020, 54(3): 308-314. doi: 10.1097/SHK.0000000000001510
|
[40] |
CASAS-APARICIO G, ALVARADO-DE LA BARRERA C, ESCAMILLA-ILLESCAS D, et al. Role of urinary kidney stress biomarkers for early recognition of subclinical acute kidney injury in critically ill COVID-19 patients[J]. Biomolecules, 2022, 12(2): 275. doi: 10.3390/biom12020275
|
[41] |
DÉPRET F, HOLLINGER A, CARIOU A, et al. Incidence and outcome of subclinical acute kidney injury using penKid in critically ill patients[J]. Am J Respir Crit Care Med, 2020, 202(6): 822-829. doi: 10.1164/rccm.201910-1950OC
|
[42] |
LI Y F, JING Y, HAO J L, et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4(11): 813-819. doi: 10.1007/s13238-013-3085-y
|
[43] |
ZOU Y F, ZHANG W. Role of microRNA in the detection, progression, and intervention of acute kidney injury[J]. Exp Biol Med, 2018, 243(2): 129-136. doi: 10.1177/1535370217749472
|
[44] |
GAEDE L, LIEBETRAU C, BLUMENSTEIN J, et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery[J]. Nephrol Dial Transplant, 2016, 31(5): 760-766. doi: 10.1093/ndt/gfw007
|
[45] |
MILLER D, EAGLE-HEMMING B, SHEIKH S, et al. Urinary extracellular vesicles and micro-RNA as markers of acute kidney injury after cardiac surgery[J]. Sci Rep, 2022, 12(1): 10402. doi: 10.1038/s41598-022-13849-z
|
[46] |
BOUQUEGNEAU A, KRZESINSKI J M, DELANAYE P, et al. Biomarkers and physiopathology in the cardiorenal syndrome[J]. Clin Chim Acta, 2015, 443: 100-107. doi: 10.1016/j.cca.2014.10.041
|
[47] |
MÁRTENSSON J, BELLOMO R. The rise and fall of NGAL in acute kidney injury[J]. Blood Purif, 2014, 37(4): 304-310. doi: 10.1159/000364937
|
[48] |
DE GEUS H R H, RONCO C, HAASE M, et al. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: a potential tool to monitor acute tubular damage[J]. J Thorac Cardiovasc Surg, 2016, 151(6): 1476-1481. doi: 10.1016/j.jtcvs.2016.01.037
|
[49] |
XIAOLI L, YUJIE Z, ZHIJIAN W, et al. E0513 Plasma NGAL Could early predict contrast-induced acute kidney injury after percutaneous coronary interventions[J]. Heart, 2010, 96(Suppl 3): A159-A160.
|
[50] |
BOLIGNANO D, BASILE G, PARISI P, et al. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure[J]. Rejuvenation Res, 2009, 12(1): 7-14. doi: 10.1089/rej.2008.0803
|
[51] |
MARAKALA V. Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury-A systematic review[J]. Clin Chim Acta, 2022, 536: 135-141. doi: 10.1016/j.cca.2022.08.029
|
[52] |
GOMES B C, SILVA JUNIOR J M, TUON F F. Evaluation of urinary NGAL as a diagnostic tool for acute kidney injury in critically ill patients with infection: an original study[J]. Can J Kidney Health Dis, 2020, 7: 2054358120934215.
|
[53] |
TAI Q, YI H M, WEI X X, et al. The accuracy of urinary TIMP-2 and IGFBP-7 for the diagnosis of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis[J]. J Intensive Care Med, 2020, 35(10): 1013-1025. doi: 10.1177/0885066618807124
|
[54] |
GÖCZE I, JAUCH D, GÖTZ M, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study[J]. Ann Surg, 2018, 267(6): 1013-1020. doi: 10.1097/SLA.0000000000002485
|
[55] |
MEERSCH M, SCHMIDT C, HOFFMEIER A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial[J]. Intensive Care Med, 2017, 43(11): 1551-1561. doi: 10.1007/s00134-016-4670-3
|
[56] |
GUZZI L M, BERGLER T, BINNALL B, et al. Clinical use of[TIMP-2]·[IGFBP-7]biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel[J]. Crit Care, 2019, 23(1): 225. doi: 10.1186/s13054-019-2504-8
|
[57] |
VIJAYAN A, FAUBEL S, ASKENAZI D J, et al. Clinical use of the urine biomarker[TIMP-2]×[IGFBP-7]forAcute kidney injury risk assessment[J]. Am J Kidney Dis, 2016, 68(1): 19-28. doi: 10.1053/j.ajkd.2015.12.033
|
[58] |
LEE T H, LEE C C, CHEN J J, et al. Assessment of cardiopulmonary bypass duration improves novel biomarker detection for predicting postoperative acute kidney injury after cardiovascular surgery[J]. J Clin Med, 2021, 10(13): 2741. doi: 10.3390/jcm10132741
|
[59] |
NARUSE H, ISHII J, TAKAHASHI H, et al. Urinary liver-type fatty-acid-binding protein predicts long-term adverse outcomes in medical cardiac intensive care units[J]. J Clin Med, 2020, 9(2): 482. doi: 10.3390/jcm9020482
|
[60] |
PELSERS M M A L, HERMENS W T, GLATZ J F C. Fatty acid-binding proteins as plasma markers of tissue injury[J]. Clin Chim Acta, 2005, 352(1/2): 15-35.
|
[61] |
MASSOTH C, ZARBOCK A. Diagnosis of cardiac surgery-associated acute kidney injury[J]. J Clin Med, 2021, 10(16): 3664. doi: 10.3390/jcm10163664
|
[62] |
OLVERA-POSADA D, DAYARATHNA T, DION M, et al. KIM-1 is a potential urinary biomarker of obstruction: results from a prospective cohort study[J]. J Endourol, 2017, 31(2): 111-118. doi: 10.1089/end.2016.0215
|
[63] |
陈彩妹, 王凉, 李明秋, 等. 肾损伤分子-1在心脏体外循环术后急性肾损伤早期诊断中的应用[J]. 实用医学杂志, 2012, 28(13): 2203-2205. doi: 10.3969/j.issn.1006-5725.2012.13.039
|
[64] |
SEIBERT F S, HERINGHAUS A, PAGONAS N, et al. Dickkopf-3 in the prediction of contrast media induced acute kidney injury[J]. J Nephrol, 2021, 34(3): 821-828. doi: 10.1007/s40620-020-00910-1
|
[65] |
LIMA C, GORAB D L, FERNANDES C R, et al. Role of proenkephalin in the diagnosis of severe and subclinical acute kidney injury during the perioperative period of liver transplantation[J]. Pract Lab Med, 2022, 31: e00278. doi: 10.1016/j.plabm.2022.e00278
|
[66] |
HOLLINGER A, WITTEBOLE X, FRANÇOIS B, et al. Proenkephalin A 119-159(penkid) is an early biomarker of septic acute kidney injury: the kidney in sepsis and septic shock (kid-SSS) study[J]. Kidney Int Rep, 2018, 3(6): 1424-1433. doi: 10.1016/j.ekir.2018.08.006
|
[67] |
ZOU Y F, WEN D, ZHAO Q, et al. Urinary microRNA-30c-5p and microRNA-192-5p as potential biomarkers of ischemia-reperfusion-induced kidney injury[J]. Exp Biol Med, 2017, 242(6): 657-667. doi: 10.1177/1535370216685005
|
[68] |
ZHANG L L, XU Y, XUE S, et al. Implications of dynamic changes in miR-192 expression in ischemic acute kidney injury[J]. Int Urol Nephrol, 2017, 49(3): 541-550. doi: 10.1007/s11255-016-1485-7
|
[69] |
ARUN O, CELIK G, OC B, et al. Renal effects of coronary artery bypass graft surgery in diabetic and non-diabetic patients: a study with urinary neutrophil gelatinase-associated lipocalin and serum cystatin C[J]. Kidney Blood Press Res, 2015, 40(2): 141-152. doi: 10.1159/000368490
|
[70] |
ELMEDANY S M, NAGA S S, ELSHARKAWY R, et al. Novel urinary biomarkers and the early detection of acute kidney injury after open cardiac surgeries[J]. J Crit Care, 2017, 40: 171-177. doi: 10.1016/j.jcrc.2017.03.029
|
[71] |
MCILROY D R, FARKAS D, PAN K, et al. Combining novel renal injury markers with delta serum creatinine early after cardiac surgery and risk-stratification for serious adverse outcomes: an exploratory analysis[J]. J Cardiothorac Vasc Anesth, 2018, 32(5): 2190-2200. doi: 10.1053/j.jvca.2017.12.052
|
[72] |
MEISNER A, KERR K F, THIESSEN-PHILBROOK H, et al. Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury[J]. Kidney Int, 2016, 89(2): 429-438. doi: 10.1038/ki.2015.283
|
1. |
郑执一,曹鹏飞,陈文奇,王锐,乔建龙,邵花香,李华玲. ANGPTL4的作用及机制. 生命的化学. 2024(05): 890-899 .
![]() |