HE Lan, LU Yang, XIA Zhigang, XIE Xiaoyi, DU Lili, GU Shulian, MA Lan, HE Yongming, SHEN E. A preliminary exploration of a deep learning-based artificial intelligence model for automatic quantification of echocardiographic left ventricular ejection fraction[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 9-14. DOI: 10.7619/jcmp.20240289
Citation: HE Lan, LU Yang, XIA Zhigang, XIE Xiaoyi, DU Lili, GU Shulian, MA Lan, HE Yongming, SHEN E. A preliminary exploration of a deep learning-based artificial intelligence model for automatic quantification of echocardiographic left ventricular ejection fraction[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 9-14. DOI: 10.7619/jcmp.20240289

A preliminary exploration of a deep learning-based artificial intelligence model for automatic quantification of echocardiographic left ventricular ejection fraction

More Information
  • Received Date: January 15, 2024
  • Revised Date: February 29, 2024
  • Available Online: May 14, 2024
  • Objective 

    To construct a deep learning-based artificial intelligence model to automatically quantify left ventricular ejection fraction (LVEF) using static views of echocardiography.

    Methods 

    The study included data of 1, 902 adults with left ventricular multi-slice echocardiographic views at end-systole and end-diastole. The collected dataset was divided into development set (1, 610 cases, with 1, 252 cases for model training and 358 cases for parameter adjustment), internal test set (177 cases for internal validation), and external test set (115 cases for external validation and generalization testing). The model achieved left ventricular segmentation and automatic quantification of LVEF through precise identification of the left ventricular endocardial boundary and inspection of key points. The Dice coefficient was employed to evaluate the performance of the left ventricular segmentation model, while the Pearson correlation coefficient and the intraclass correlation coefficient were used to assess the correlation and consistency between the automatically measured LVEF and the reference standard.

    Results 

    The left ventricular segmentation model performed well, with Dice coefficients ≥ 0.90 for both the internal and external independent test sets; the agreement between the automatically measured LVEF and the cardiologists' manual measurements was moderate, with Pearson correlation coefficients ranging from 0.46 to 0.71 and intragroup correlation analysis agreements from 0.39 to 0.57 for the internal test set; and Pearson correlation coefficients for the independent external test set were 0.26 to 0.54 and intra-group correlation analysis agreement of 0.23 to 0.50.

    Conclusion 

    In this study, a left ventricular segmentation model with better performance is constructed, and initial application of the model for automatic quantification of LVEF for two-dimensional echocardiography has general performance, which requires further optimisation of the algorithm to improve the model generalisation.

  • [1]
    SAVARESE G, BECHER P M, LUND L H, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology[J]. Cardiovasc Res, 2023, 118(17): 3272-3287. doi: 10.1093/cvr/cvac013
    [2]
    AGGARWAL R, YEH R W, JOYNT MADDOX K E, et al. Cardiovascular risk factor prevalence, treatment, and control in US adults aged 20 to 44 years, 2009 to March 2020[J]. JAMA, 2023, 329(11): 899-909. doi: 10.1001/jama.2023.2307
    [3]
    SHAH K S, XU H L, MATSOUAKA R A, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes[J]. J Am Coll Cardiol, 2017, 70(20): 2476-2486. doi: 10.1016/j.jacc.2017.08.074
    [4]
    KOH A S, TAY W T, TENG T H K, et al. A comprehensive population-based characterization of heart failure with mid-range ejection fraction[J]. Eur J Heart Fail, 2017, 19(12): 1624-1634. doi: 10.1002/ejhf.945
    [5]
    湛先发, 余小亚, 王洪军, 等. 3种机器学习算法评估脑梗死患者颈动脉斑块稳定性的效能比较[J]. 实用临床医药杂志, 2023, 27(22): 6-12. doi: 10.7619/jcmp.20232657
    [6]
    裴昌军, 孙雪丽, 王鑫, 等. 人工智能结合多层螺旋CT检查在机关体检人群肺结节筛查中的应用[J]. 实用临床医药杂志, 2023, 27(24): 89-92. doi: 10.7619/jcmp.20232282
    [7]
    曾研. 医学超声若干目标检测深度学习方法研究[D]. 北京: 北京工业大学, 2022.
    [8]
    张浩, 常建东. 基于文献计量方法的人工智能在超声心动图中的应用进展研究[J]. 中国医疗设备, 2023, 38(1): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202301024.htm
    [9]
    中华医学会超声医学分会超声心动图学组. 中国成年人超声心动图检查测量指南[J]. 中华超声影像学杂志, 2016, 25(8): 645-666. https://cdmd.cnki.com.cn/Article/CDMD-10632-1018178662.htm
    [10]
    LANG R M, BADANO L P, MOR-AVI V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 233-270. doi: 10.1093/ehjci/jev014
    [11]
    LINDENHEIM-LOCHER W, SWITONSKI A, KRZESZOWSKI T, et al. YOLOv5 drone detection using multimodal data registered by the vicon system[J]. Sensors, 2023, 23(14): 6396. doi: 10.3390/s23146396
    [12]
    LIU X, FAN Y T, LI S, et al. Deep learning-based automated left ventricular ejection fraction assessment using 2-D echocardiography[J]. Am J Physiol Heart Circ Physiol, 2021, 321(2): H390-H399. doi: 10.1152/ajpheart.00416.2020
    [13]
    XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1492-1500.
    [14]
    LAM C S P, SOLOMON S D. Classification of HeartFailure according to ejection fraction: JACC review topic of the week[J]. J Am Coll Cardiol, 2021, 77(25): 3217-3225. doi: 10.1016/j.jacc.2021.04.070
    [15]
    ZAMZMI G, HSU L Y, LI W, et al. Harnessing machine intelligence in automatic echocardiogram analysis: current status, limitations, and future directions[J]. IEEE Rev Biomed Eng, 2021, 14: 181-203. doi: 10.1109/RBME.2020.2988295
    [16]
    OSTVIK A, SMISTAD E, AASE S A, et al. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks[J]. Ultrasound Med Biol, 2019, 45(2): 374-384. doi: 10.1016/j.ultrasmedbio.2018.07.024
    [17]
    MORADI S, OGHLI M G, ALIZADEHASL A, et al. MFP-Unet: a novel deep learning based approach for left ventricle segmentation in echocardiography[J]. Phys Med, 2019, 67: 58-69. doi: 10.1016/j.ejmp.2019.10.001
    [18]
    OUYANG D, HE B, GHORBANI A, et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580(7802): 252-256. doi: 10.1038/s41586-020-2145-8
    [19]
    REYNAUD H, VLONTZOS A, HOU B, et al. Ultrasound video transformers for cardiac ejection fraction estimation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part Ⅵ. ACM, 2021: 495-505.
    [20]
    PRADA G, FRITZ A V, RESTREPO-HOLGUÍN M, et al. Focused cardiac ultrasonography for left ventricular systolic function[J]. N Engl J Med, 2019, 381(21): e36.
    [21]
    ASCH F M, MOR-AVI V, RUBENSON D, et al. Deep learning-based automated echocardiographic quantification of left ventricular ejection fraction: a point-of-care solution[J]. Circ Cardiovasc Imaging, 2021, 14(6): e012293. doi: 10.1161/CIRCIMAGING.120.012293
  • Related Articles

    [1]ZHANG Wei, ZENG Yan, TANG Yujia. Effect of polyhexamethylene biguanide antibacterial dressing in skin ulcers around the stoma in patients with enterostomy undergoing radiotherapy and chemotherapy[J]. Journal of Clinical Medicine in Practice, 2024, 28(7): 129-132,137. DOI: 10.7619/jcmp.20233928
    [2]WANG Jie, YAN Xuebing, WEI Benfei. Effect observation of postoperative radiotherapy combined with systemic chemotherapy in treating patients with cervical cancer in early stage[J]. Journal of Clinical Medicine in Practice, 2023, 27(11): 11-16. DOI: 10.7619/jcmp.20223685
    [3]PEI Bo, CHEN Jiaquan, DUAN Chunyan, YANG Mei, HE Du, CHEN Dian. Efficacy and safety of lobaplatin combined with radiotherapy versus cisplatin plus radiotherapy for locally advanced cervical cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(6): 106-109. DOI: 10.7619/jcmp.20201865
    [4]LI Honghong. Effect evaluation of radical surgery combined with radiotherapy and chemotherapy in treatment of patients with laryngeal carcinoma[J]. Journal of Clinical Medicine in Practice, 2019, 23(22): 37-39. DOI: 10.7619/jcmp.201922013
    [5]Research progress in radiotherapy and chemotherapy for early glottic laryngeal carcinoma[J]. Journal of Clinical Medicine in Practice, 2019, (3): 130-132. DOI: 10.7619/jcmp.201903037
    [6]HU Ruonan, GAO Qiong. Effect of comprehensive nursing intervention on radiotherapy and chemotherapy of advanced non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2017, (22): 32-34. DOI: 10.7619/jcmp.201722011
    [7]ZHAO Wenfang, XU Qin, WANG Fufang. Application of medical nursing of integrated management model in cervical cancer patients with postoperative radiotherapy and chemotherapy[J]. Journal of Clinical Medicine in Practice, 2016, (20): 102-105. DOI: 10.7619/jcmp.201620032
    [8]ZHANG Zhaoli, PI Yuanping, JI Jia, YUAN Wenxiu. Application of evaluation standard of health education for patients undergoing chemotherapy[J]. Journal of Clinical Medicine in Practice, 2016, (6): 50-52,56. DOI: 10.7619/jcmp.201606016
    [9]ZHAO Yihong, GAO Junmao, HE Heliang. Long-term efficacy of small target region intensity-modulated radiotherapy and chemotherapy in treatment of patients with nasopharyngeal cancer[J]. Journal of Clinical Medicine in Practice, 2015, (21): 73-76. DOI: 10.7619/jcmp.201521020
    [10]GU Ju-feng. 51 cases of patients with lung cancer during chemotherapy and radiotherapy nursing[J]. Journal of Clinical Medicine in Practice, 2011, (2): 5-6. DOI: 10.3969/j.issn.1672-2353.2011.02.003
  • Cited by

    Periodical cited type(10)

    1. 顾雅秋,沈丹. 人性化护理在外科手术室护理中的效果分析. 名医. 2023(14): 81-83 .
    2. 王静,孙静,王艳芳. 磁性医院管理理念在心血管外科手术室护理管理中的应用. 中华现代护理杂志. 2022(03): 387-391 .
    3. 王婷婷,冯文娟. 基于思维导图的无缝隙干预模式在泌尿外科手术室护理中的应用效果及对护理满意度的影响. 临床医学研究与实践. 2022(11): 177-180+184 .
    4. 曹江涛. 个性化护理服务在手术室患者中的应用. 保健医学研究与实践. 2021(S1): 202-204 .
    5. 张媛媛. 人性化护理模式在手术室护理中的应用价值评价. 中国继续医学教育. 2020(06): 181-183 .
    6. 王前前,胡亚平,张林波. 手术室整体护理对甲状腺手术患者的影响研究. 现代医药卫生. 2020(14): 2267-2269 .
    7. 冯雪玉. 手术室护理干预对结石性胆囊炎合并糖尿病患者的临床价值. 糖尿病新世界. 2020(19): 9-11 .
    8. 李瑾. 手术室人性化护理服务实施的应用效果分析. 山西医药杂志. 2020(24): 3519-3521 .
    9. 程宝玉. 舒适性护理应用于老年肺癌患者术中护理效果分析. 现代医学. 2019(12): 1544-1547 .
    10. 滕文久. 心理护理在手术室患者中的应用效果. 中国民康医学. 2019(23): 151-153 .

    Other cited types(0)

Catalog

    Article views (228) PDF downloads (32) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return