Citation: | CAO Lingling, MEI Xiaocai, CHEN Qian, ZHANG Jian. Immunotherapy of γδ T cells in hepatocellular carcinoma: current status and perspectives[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 131-137. DOI: 10.7619/jcmp.20242075 |
The hepatocellular carcinoma (HCC) poses a serious threat to human health. The main target of one of the immunotherapeutic approaches is γδ T cells. γδ T cells as one of the subpopulations of T lymphocytes can directly recognize and target HCC cells, making them a potential target for immunotherapy. In this paper, we discussed the biological properties of γδ T cells and their dual roles within HCC cells and therapeutic strategies, and provide an overview on the research of γδ T cell therapy for HCC.
[1] |
FOERSTER F, GAIRING S J, MÜLLER L, et al. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options[J]. J Hepatol, 2022, 76(2): 446-457. doi: 10.1016/j.jhep.2021.09.007
|
[2] |
WANG Y, DENG B C. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Rev, 2023, 42(3): 629-652. doi: 10.1007/s10555-023-10084-4
|
[3] |
CHEN Q, YANG S B, ZHANG Y W, et al. MiR-3682-3p directly targets FOXO3 and stimulates tumor stemness in hepatocellular carcinoma via a positive feedback loop involving FOXO3/PI3K/AKT/c-Myc[J]. World J Stem Cells, 2022, 14(7): 539-555. doi: 10.4252/wjsc.v14.i7.539
|
[4] |
CHEN C, WANG Z H, DING Y, et al. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1133308. doi: 10.3389/fimmu.2023.1133308
|
[5] |
PAPATHEODORIDI M, TAMPAKI M, LOK A S, et al. Risk of HBV reactivation during therapies for HCC: a systematic review[J]. Hepatology, 2022, 75(5): 1257-1274. doi: 10.1002/hep.32241
|
[6] |
VITALE A, SVEGLIATI-BARONI G, ORTOLANI A, et al. Epidemiological trends and trajectories of MAFLD-associated hepatocellular carcinoma 2002-2033: the ITA. LI. CA database[J]. Gut, 2023, 72(1): 141-152. doi: 10.1136/gutjnl-2021-324915
|
[7] |
CRANE H, GOFTON C, SHARMA A, et al. MAFLD: an optimal framework for understanding liver cancer phenotypes[J]. J Gastroenterol, 2023, 58(10): 947-964. doi: 10.1007/s00535-023-02021-7
|
[8] |
NORERO B, DUFOUR J F. Should we undertake surveillance for HCC in patients with MAFLD?[J]. Ther Adv Endocrinol Metab, 2023, 14: 20420188231160389. doi: 10.1177/20420188231160389
|
[9] |
LIU Y, XUN Z Z, MA K, et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy[J]. J Hepatol, 2023, 78(4): 770-782. doi: 10.1016/j.jhep.2023.01.011
|
[10] |
CHENG K, CAI N, ZHU J H, et al. Tumor-associated macrophages in liver cancer: from mechanisms to therapy[J]. Cancer Commun, 2022, 42(11): 1112-1140. doi: 10.1002/cac2.12345
|
[11] |
YOU M J, GAO Y N, FU J L, et al. Epigenetic regulation of HBV-specific tumor-infiltrating T cells in HBV-related HCC[J]. Hepatology, 2023, 78(3): 943-958. doi: 10.1097/HEP.0000000000000369
|
[12] |
PAPADAKOS S P, ARVANITAKIS K, STERGIOU I E, et al. γδ T cells: a game changer in the future of hepatocellular carcinoma immunotherapy[J]. Int J Mol Sci, 2024, 25(3): 1381. doi: 10.3390/ijms25031381
|
[13] |
HUNG Y P, SHAO Y Y, LEE J M, et al. Potential of circulating immune cells as biomarkers of nivolumab treatment efficacy for advanced hepatocellular carcinoma[J]. J Chin Med Assoc, 2021, 84(2): 144-150. doi: 10.1097/JCMA.0000000000000477
|
[14] |
ZHANG L R, XU J L, ZHOU S Q, et al. Endothelial DGKG promotes tumor angiogenesis and immune evasion in hepatocellular carcinoma[J]. J Hepatol, 2024, 80(1): 82-98. doi: 10.1016/j.jhep.2023.10.006
|
[15] |
YU H, SHI T Z, YAO L L, et al. Elevated nuclear PIGL disrupts the cMyc/BRD4 axis and improves PD-1 blockade therapy by dampening tumor immune evasion[J]. Cell Mol Immunol, 2023, 20(8): 867-880. doi: 10.1038/s41423-023-01048-3
|
[16] |
HU Y, CHEN D, HONG M J, et al. Apoptosis, pyroptosis, and ferroptosis conspiringly induce immunosuppressive hepatocellular carcinoma microenvironment and γδ T-cell imbalance[J]. Front Immunol, 2022, 13: 845974. doi: 10.3389/fimmu.2022.845974
|
[17] |
YI Y, HE H W, WANG J X, et al. The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner[J]. J Hepatol, 2013, 58(5): 977-983. doi: 10.1016/j.jhep.2012.12.015
|
[18] |
HE W J, HU Y, CHEN D, et al. Hepatocellular carcinoma-infiltrating γδ T cells are functionally defected and allogenic Vδ2+ γδ T cell can be a promising complement[J]. Clin Transl Med, 2022, 12(4): e800. doi: 10.1002/ctm2.800
|
[19] |
HAN J W, YOON S K. Tissue-resident lymphocytes: implications in immunotherapy for hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 22(1): 232. doi: 10.3390/ijms22010232
|
[20] |
VANTOUROUT P, LAING A, WOODWARD M J, et al. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology[J]. Proc Natl Acad Sci U S A, 2018, 115(5): 1039-1044. doi: 10.1073/pnas.1701237115
|
[21] |
HERRMANN T, FICHTNER A S, KARUNAKARAN M M. An update on the molecular basis of phosphoantigen recognition by Vγ9Vδ2 T cells[J]. Cells, 2020, 9(6): 1433. doi: 10.3390/cells9061433
|
[22] |
MA L, FENG Y M, ZHOU Z S. A close look at current γδ T-cell immunotherapy[J]. Front Immunol, 2023, 14: 1140623. doi: 10.3389/fimmu.2023.1140623
|
[23] |
CHEN D, GUO Y L, JIANG J H, et al. γδ T cell exhaustion: Opportunities for intervention[J]. J Leukoc Biol, 2022, 112(6): 1669-1676. doi: 10.1002/JLB.5MR0722-777R
|
[24] |
佟佳益, 郑改改, 王宇, 等. 医学人工智能研究热点双聚类分析[J]. 实用临床医药杂志, 2024, 28(3): 13-17, 22. doi: 10.7619/jcmp.20232042
|
[25] |
SEBESTYEN Z, PRINZ I, DÉCHANET-MERVILLE J, et al. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies[J]. Nat Rev Drug Discov, 2020, 19(3): 169-184. doi: 10.1038/s41573-019-0038-z
|
[26] |
DEKKERS J F, ALIEVA M, CLEVEN A, et al. Uncovering the mode of action of engineered T cells in patient cancer organoids[J]. Nat Biotechnol, 2023, 41(1): 60-69. doi: 10.1038/s41587-022-01397-w
|
[27] |
ZAKERI N, HALL A, SWADLING L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma[J]. Nat Commun, 2022, 13(1): 1372. doi: 10.1038/s41467-022-29012-1
|
[28] |
MCGRAW J M, THELEN F, HAMPTON E N, et al. JAML promotes CD8 and γδ T cell antitumor immunity and is a novel target for cancer immunotherapy[J]. J Exp Med, 2021, 218(10): e20202644. doi: 10.1084/jem.20202644
|
[29] |
TITOV A, ZMIEVSKAYA E, GANEEVA I, et al. Adoptive immunotherapy beyond CAR T-cells[J]. Cancers, 2021, 13(4): 743. doi: 10.3390/cancers13040743
|
[30] |
TOSOLINI M, PONT F, POUPOT M, et al. Assessment of tumor-infiltrating TCRV γ 9V δ 2 γδ lymphocyte abundance by deconvolution of human cancers microarrays[J]. Oncoimmunology, 2017, 6(3): e1284723. doi: 10.1080/2162402X.2017.1284723
|
[31] |
GENTLES A J, NEWMAN A M, LIU C L, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers[J]. Nat Med, 2015, 21(8): 938-945. doi: 10.1038/nm.3909
|
[32] |
ZHAO N, DANG H, MA L C, et al. Intratumoral γδ T-cell infiltrates, chemokine (C-C motif) ligand 4/chemokine (C-C motif) ligand 5 protein expression and survival in patients with hepatocellular carcinoma[J]. Hepatology, 2021, 73(3): 1045-1060. doi: 10.1002/hep.31412
|
[33] |
DE VRIES N L, VAN DE HAAR J, VENINGA V, et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects[J]. Nature, 2023, 613(7945): 743-750. doi: 10.1038/s41586-022-05593-1
|
[34] |
DU Y Y, PENG Q W, CHENG D, et al. Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells[J]. Nat Commun, 2022, 13(1): 231. doi: 10.1038/s41467-021-27936-8
|
[35] |
JIANG H, YANG Z, SONG Z Y, et al. γδ T cells in hepatocellular carcinoma patients present cytotoxic activity but are reduced in potency due to IL-2 and IL-21 pathways[J]. Int Immunopharmacol, 2019, 70: 167-173. doi: 10.1016/j.intimp.2019.02.019
|
[36] |
WANG X, TIAN Z. γδ T cells in liver diseases[J]. Front Med, 2018, 12(3): 262-268. doi: 10.1007/s11684-017-0584-x
|
[37] |
KANG I, KIM Y, LEE H K. γδ T cells as a potential therapeutic agent for glioblastoma[J]. Front Immunol, 2023, 14: 1273986. doi: 10.3389/fimmu.2023.1273986
|
[38] |
XIAO Z Q, WANG S S, TIAN Y X, et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells[J]. Cell Rep, 2023, 42(7): 112684. doi: 10.1016/j.celrep.2023.112684
|
[39] |
YUAN L J, MA X Q, YANG Y Y, et al. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells[J]. Nature, 2023, 621(7980): 840-848. doi: 10.1038/s41586-023-06525-3
|
[40] |
SILVA-SANTOS B, MENSURADO S, COFFELT S B. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer[J]. Nat Rev Cancer, 2019, 19(7): 392-404. doi: 10.1038/s41568-019-0153-5
|
[41] |
SONG M J, HE J Y, PAN Q Z, et al. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression[J]. Hepatology, 2021, 73(5): 1717-1735. doi: 10.1002/hep.31792
|
[42] |
HAN S L, BAO X Y, ZOU Y F, et al. D-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma[J]. Sci Adv, 2023, 9(29): eadg2697. doi: 10.1126/sciadv.adg2697
|
[43] |
TOUTIRAIS O, CHARTIER P, DUBOIS D, et al. Constitutive expression of TGF-bêta1, interleukin-6 and interleukin-8 by tumor cells as a major component of immune escape in human ovarian carcinoma[J]. Eur Cytokine Netw, 2003, 14(4): 246-255.
|
[44] |
CHOI H, LEE Y, PARK S A, et al. Human allogenic γδ T cells kill patient-derived glioblastoma cells expressing high levels of DNAM-1 ligands[J]. Oncoimmunology, 2022, 11(1): 2138152. doi: 10.1080/2162402X.2022.2138152
|
[45] |
MONDRAGÓN L, KROEMER G, GALLUZZI L. Immunosuppressive γδ T cells foster pancreatic carcinogenesis[J]. Oncoimmunology, 2016, 5(11): e1237328. doi: 10.1080/2162402X.2016.1237328
|
[46] |
MAKKOUK A, YANG X C, BARCA T, et al. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9(12): e003441. doi: 10.1136/jitc-2021-003441
|
[47] |
CAO W Q, SHARMA M, IMAM R, et al. Study on diagnostic values of astrocyte elevated gene 1 (AEG-1) and glypican 3 (GPC-3) in hepatocellular carcinoma[J]. Am J Clin Pathol, 2019, 152(5): 647-655. doi: 10.1093/ajcp/aqz086
|
[48] |
DANGI A, HUSAIN I, JORDAN C Z, et al. Blocking CCL8-CCR8-mediated early allograft inflammation improves kidney transplant function[J]. J Am Soc Nephrol, 2022, 33(10): 1876-1890. doi: 10.1681/ASN.2022020139
|
[49] |
WEI Y, LAO X M, XIAO X, et al. Plasma cell polarization to the immunoglobulin G phenotype in hepatocellular carcinomas involves epigenetic alterations and promotes hepatoma progression in mice[J]. Gastroenterology, 2019, 156(6): 1890-1904. e16. doi: 10.1053/j.gastro.2019.01.250
|
[50] |
LIANG J Y, WANG D S, LIN H C, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma[J]. Int J Biol Sci, 2020, 16(13): 2430-2441. doi: 10.7150/ijbs.45050
|
[51] |
GUO M Z, YUAN F F, QI F, et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis[J]. J Transl Med, 2020, 18(1): 306. doi: 10.1186/s12967-020-02469-8
|
[52] |
SCHULZ-JUERGENSEN S, MARISCHEN L, WESCH D, et al. Markers of operational immune tolerance after pediatric liver transplantation in patients under immunosuppression[J]. Pediatr Transplant, 2013, 17(4): 348-354. doi: 10.1111/petr.12079
|
[53] |
ZHANG R Y, ZHANG Z, LIU Z K, et al. Adoptive cell transfer therapy for hepatocellular carcinoma[J]. Front Med, 2019, 13(1): 3-11. doi: 10.1007/s11684-019-0684-x
|