DU Fengming, CAO Xiaohua, LIU Ruichen, HU Chaoyang, SUN Yan. Establishment of artificial neural network model based on mitochondria-associated genes in Crohn's disease[J]. Journal of Clinical Medicine in Practice, 2024, 28(23): 8-15. DOI: 10.7619/jcmp.20242822
Citation: DU Fengming, CAO Xiaohua, LIU Ruichen, HU Chaoyang, SUN Yan. Establishment of artificial neural network model based on mitochondria-associated genes in Crohn's disease[J]. Journal of Clinical Medicine in Practice, 2024, 28(23): 8-15. DOI: 10.7619/jcmp.20242822

Establishment of artificial neural network model based on mitochondria-associated genes in Crohn's disease

More Information
  • Received Date: July 02, 2024
  • Revised Date: September 17, 2024
  • Objective 

    To screen mitochondria-related genes in Crohn's disease (CD) based on the Gene Expression Omnibus (GEO) database, construct an artificial neural network diagnostic model and evaluate its performance.

    Methods 

    The CD-related datasets GSE186582 and GSE102133 were downloaded from the GEO database for differential expression genes (DEGs) screening. The intersection of DEGs and mitochondrial genes from the MitoCarta 3.0 database was obtained. Least absolute shrinkage and selection operator regression and random forest algorithms were used to identify CD-specific genes and construct an artificial neural network diagnostic model. The model was further validated by the validation set GSE95095, and the diagnostic performance was evaluated by the area under the curve (AUC) of the receiver operating characteristic curve. The immune cell infiltration in CD was assessed by the CIBERSORT algorithm, and the relationship between biomarkers and infiltrated immune cells was investigated.

    Results 

    A total of 551 DEGs were obtained, including 275 upregulated and 276 downregulated genes. There were 20 mitochondria-related genes associated with CD. A total of 9 mitochondria-related feature genes (SOD2, MTHFD2, BPHL, PXMP2, RMND1, AGXT2, MAOA, HMGCS2, MAOB) were screened by two machine learning algorithms. An artificial neural network diagnostic model was constructed by the selected feature genes. The values of AUC of the model in the training and validation groups were 0.956 and 0.736 respectively. Immune cell infiltration analysis showed that the feature genes were associated with resting memory CD4+ T cells, activated memory CD4+ T cells, activated dendritic cells, neutrophils, and CD8+ T cells.

    Conclusion 

    The artificial neural network diagnostic model for CD based on 9 mitochondrial genes has good predictive performance.

  • [1]
    TAVASSOLIFAR M J, CHANGAEI M, SALEHI Z, et al. Redox imbalance in Crohn's disease patients is modulated by Azathioprine[J]. Redox Rep, 2021, 26(1): 80-84. doi: 10.1080/13510002.2021.1915665
    [2]
    AMODEO G, FRANCHI S, GALIMBERTI G, et al. The prokineticin system in inflammatory bowel diseases: a clinical and preclinical overview[J]. Biomedicines, 2023, 11(11): 2985. doi: 10.3390/biomedicines11112985
    [3]
    苏培强, 钟壮霞, 陈益耀, 等. 胞外-5'-核苷酸酶在克罗恩病小鼠结肠组织中的表达及意义[J]. 中国热带医学, 2023, 23(10): 1071-1076.
    [4]
    NAYAR S, MORRISON J K, GIRI M, et al. A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease[J]. Nature, 2021, 593(7858): 275-281. doi: 10.1038/s41586-021-03484-5
    [5]
    PETAGNA L, ANTONELLI A, GANINI C, et al. Pathophysiology of Crohn's disease inflammation and recurrence[J]. Biol Direct, 2020, 15(1): 23. doi: 10.1186/s13062-020-00280-5
    [6]
    KANG Y, PARK H, CHOE B H, et al. The role and function of mucins and its relationship to inflammatory bowel disease[J]. Front Med, 2022, 9: 848344. doi: 10.3389/fmed.2022.848344
    [7]
    CROSS E, PRIOR J A, FARMER A D, et al. Patients'views and experiences of delayed diagnosis of inflammatory bowel disease: a qualitative study[J]. BJGP Open, 2023, 7(4): BJGPO. 2023, 70: 1-10.
    [8]
    SÁNCHEZ-QUINTERO M J, RODRÍGUEZ-DÍAZ C, RODRÍGUEZ-GONZÁLEZ F J, et al. Role of mitochondria in inflammatory bowel diseases: a systematic review[J]. Int J Mol Sci, 2023, 24(23): 17124. doi: 10.3390/ijms242317124
    [9]
    HO G T, THEISS A L. Mitochondria and inflammatory bowel diseases: toward a stratified therapeutic intervention[J]. Annu Rev Physiol, 2022, 84: 435-459. doi: 10.1146/annurev-physiol-060821-083306
    [10]
    NUNNARI J, SUOMALAINEN A. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6): 1145-1159. doi: 10.1016/j.cell.2012.02.035
    [11]
    BLAGOV A, ZHIGMITOVA E B, SAZONOVA M A, et al. Novel models of Crohn's disease pathogenesis associated with the occurrence of mitochondrial dysfunction in intestinal cells[J]. Int J Mol Sci, 2022, 23(9): 5141. doi: 10.3390/ijms23095141
    [12]
    RATH S, SHARMA R, GUPTA R, et al. MitoCarta3. 0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations[J]. Nucleic Acids Res, 2021, 49(D1): D1541-D1547. doi: 10.1093/nar/gkaa1011
    [13]
    吴胜男, 蒋环宇, 陈浩然, 等. 基于生物信息学分析溃疡性结肠炎的差异表达基因和相关微小RNA[J]. 实用临床医药杂志, 2024, 28(1): 48-55.
    [14]
    ALI H, SHAHZAD M, SARFRAZ S, et al. Application and impact of Lasso regression in gastroenterology: a systematic review[J]. Indian J Gastroenterol, 2023, 42(6): 780-790. doi: 10.1007/s12664-023-01426-9
    [15]
    TOTH R, SCHIFFMANN H, HUBE-MAGG C, et al. Random forest-based modelling to detect biomarkers for prostate cancer progression[J]. Clin Epigenetics, 2019, 11(1): 148. doi: 10.1186/s13148-019-0736-8
    [16]
    左志威, 孟庆良, 崔家康, 等. 基于硬皮病线粒体相关基因的人工神经网络模型的构建[J]. 南方医科大学学报, 2024, 44(5): 920-929.
    [17]
    KAWADA J I, TAKEUCHI S, IMAI H, et al. Immune cell infiltration landscapes in pediatric acute myocarditis analyzed by CIBERSORT[J]. J Cardiol, 2021, 77(2): 174-178. doi: 10.1016/j.jjcc.2020.08.004
    [18]
    KMIECZ, CYMAN M, SLEBIODA T J. Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease[J]. Adv Med Sci, 2017, 62(1): 1-16. doi: 10.1016/j.advms.2016.09.001
    [19]
    ALATEYAH N, GUPTA I, RUSYNIAK R S, et al. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression[J]. Molecules, 2022, 27(3): 811. doi: 10.3390/molecules27030811
    [20]
    MELEK J, STANCLOVÁM, DÉDEK P, et al. Infliximab plus azathioprine is more effective than azathioprine alone in achieving mucosal healing in pediatric patients with Crohn's disease[J]. J Dig Dis, 2020, 21(12): 705-710. doi: 10.1111/1751-2980.12927
    [21]
    SHANG M, NI L N, SHAN X, et al. MTHFD2 reprograms macrophage polarization by inhibiting PTEN[J]. Cell Rep, 2023, 42(5): 112481. doi: 10.1016/j.celrep.2023.112481
    [22]
    SUGIURA A, ANDREJEVA G, VOSS K, et al. MTHFD2 is a metabolic checkpoint controlling effector and regulatory Tcell fate and function[J]. Immunity, 2022, 55(1): 65-81, e9. doi: 10.1016/j.immuni.2021.10.011
    [23]
    TANG H, HOU N. Whether MTHFD2 plays a new role: from anticancer targets to anti-inflammatory disease[J]. Front Pharmacol, 2023, 14: 1257107. doi: 10.3389/fphar.2023.1257107
    [24]
    REN P F, ZHAI J X, WANG X L, et al. Inhibition of BPHL inhibits proliferation in lung carcinoma cell lines[J]. Transl Lung Cancer Res, 2023, 12(5): 1051-1061. doi: 10.21037/tlcr-23-225
    [25]
    BOROS E, ELILIÉ MAWA ONGOTH F, HEINRICHS C, et al. Primary ovarian insufficiency in RMND1 mitochondrial disease[J]. Mitochondrion, 2022, 66: 51-53. doi: 10.1016/j.mito.2022.07.004
    [26]
    KÖMHOFF M, GRACCHI V, DIJKMAN H, et al. Hyporeninemic hypoaldosteronism in RMND1-related mitochondrial disease[J]. Pediatr Nephrol, 2024, 39(1): 125-129. doi: 10.1007/s00467-023-06079-6
    [27]
    KUMON H, MIYAKE Y, YOSHINO Y, et al. Functional AGXT2 SNP rs180749 variant and depressive symptoms: baseline data from the Aidai Cohort Study in Japan[J]. J Neural Transm, 2024, 131(3): 267-274. doi: 10.1007/s00702-024-02742-w
    [28]
    DATTA C, DAS P, DUTTA S, et al. AMPK activation reduces cancer cell aggressiveness via inhibition of monoamine oxidase A (MAO-A) expression/activity[J]. Life Sci, 2024, 352: 122857. doi: 10.1016/j.lfs.2024.122857
    [29]
    NAM M H, NA H, JUSTIN LEE C, et al. A key mediator and imaging target in Alzheimer's disease: unlocking the role of reactive astrogliosis through MAOB[J]. Nucl Med Mol Imaging, 2024, 58(4): 177-184. doi: 10.1007/s13139-023-00837-y
    [30]
    CHEN D L, RUAN X, LIU Y, et al. HMGCS2 silencing attenuates high glucose-induced in vitro diabetic cardiomyopathy by increasing cell viability, and inhibiting apoptosis, inflammation, and oxidative stress[J]. Bioengineered, 2022, 13(5): 11417-11429. doi: 10.1080/21655979.2022.2063222
    [31]
    ZOU X Z, HAO J F, HOU M X. Hmgcs2 regulates M2 polarization of macrophages to repair myocardial injury induced by sepsis[J]. Aging, 2023, 15(15): 7794-7810.
    [32]
    LI Q, HUANG Z C, YANG H S, et al. Intestinal mRNA expression profiles associated with mucosal healing in ustekinumab-treated Crohn's disease patients: bioinformatics analysis and prospective cohort validation[J]. J Transl Med, 2024, 22(1): 595. doi: 10.1186/s12967-024-05427-w
    [33]
    SENSI B, SIRAGUSA L, EFRATI C, et al. The role of inflammation in Crohn's disease recurrence after surgical treatment[J]. J Immunol Res, 2020, 2020: 8846982.
    [34]
    LI N, SHI R H. Updated review on immune factors in pathogenesis of Crohn's disease[J]. World J Gastroenterol, 2018, 24(1): 15-22. doi: 10.3748/wjg.v24.i1.15
    [35]
    THERRIEN A, CHAPUY L, BSAT M, et al. Recruitment of activated neutrophils correlates with disease severity in adult Crohn's disease[J]. Clin Exp Immunol, 2019, 195(2): 251-264. doi: 10.1111/cei.13226
    [36]
    AYDEMIR Y, PINAR A, HIZAL G, et al. Neutrophil volume distribution width as a new marker in detecting inflammatory bowel disease activation[J]. Int J Lab Hematol, 2017, 39(1): 51-57. doi: 10.1111/ijlh.12574
    [37]
    SAEZ A, HERRERO-FERNANDEZ B, GOMEZ-BRIS R, et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24(2): 1526. doi: 10.3390/ijms24021526
  • Related Articles

    [1]LIU Kun, XU Qingyi, ZHU Jun, CHEN Fang. A comparison of macular morphology and microcirculation index in patients with pathological myopic choroidal neovascularization at different ages[J]. Journal of Clinical Medicine in Practice, 2023, 27(18): 65-69. DOI: 10.7619/jcmp.20231883
    [2]REN Yizhou, LIU Xiaorong, LI Zhe, XU Min, CHEN Fang, GAN Chunlan. Quantitative study of vessel density in optic disc and macular region in patients with nonarteritic anterior ischemic optic neuropathy[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 70-75, 79. DOI: 10.7619/jcmp.20222588
    [3]SHEN Yongzhi, HUANG Jiali, XIAN Kegong, LI Zhihui, ZHAO Fentu. Application of optical coherence tomography angiography in fundus screening in newly diagnosed patients with type 2 diabetes[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 56-60. DOI: 10.7619/jcmp.20222539
    [4]WU Huihui, ZHANG Xue, WANG Yan, LIU Yan, LUO Na, CHEN Fang. Quantitative study of optic disc blood flow density and thickness of peripapillary retinal nerve fiber layer in patients with diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 57-61. DOI: 10.7619/jcmp.20213748
    [5]ZHOU Chunshan, HUANG Yan, YAN Wenchao. Value of computed tomography scan versus magnetic resonance imaging in the diagnosis of pancreatic cystadenocarcinoma[J]. Journal of Clinical Medicine in Practice, 2020, 24(20): 47-50. DOI: 10.7619/jcmp.202020013
    [6]ZHAO Chenghua. Value of artificial intelligence assisted diagnostic system combined with CT test in diagnosis of pulmonary nodules[J]. Journal of Clinical Medicine in Practice, 2020, 24(19): 9-11. DOI: 10.7619/jcmp.202019003
    [7]LU Cuihong, ZHANG Baoyuan. Brain computed tomography findings and their diagnostic value in elderly patients with cerebral hemorrhage[J]. Journal of Clinical Medicine in Practice, 2019, 23(24): 8-10. DOI: 10.7619/jcmp.201924003
    [8]GONG Yujing, WU Binghui, SUO Yan, LU Huiqin, QU Xiaoyu. Characteristics of choroidal neovascularization in optical coherence tomography angiography versus fluorescein angiography[J]. Journal of Clinical Medicine in Practice, 2019, 23(22): 14-16. DOI: 10.7619/jcmp.201922005
    [9]TIAN Juan, WANG Huifang, DONG Jianghua. Value of abdominal computed tomography in evaluating extramural vascular invasion of gastric cancer[J]. Journal of Clinical Medicine in Practice, 2019, 23(7): 29-31, 36. DOI: 10.7619/jcmp.201907008
    [10]JIANG Hongfen, GU Jie, XU Yanling, MENG Haoyu, ZHANG Dingguo, JIA Enzhi, CHEN Leilei, WANG Liansheng, SHI Dongmei. Perioperative nursing of new generation optical coherence tomography in diagnosis of percutaneous coronary intervention[J]. Journal of Clinical Medicine in Practice, 2018, (12): 4-7. DOI: 10.7619/jcmp.201812002
  • Cited by

    Periodical cited type(15)

    1. 薛彦霞,刘雨情,续自凤. 升降散加减治疗重症肺炎(痰热壅肺型)的效果及对炎症因子和外周血T淋巴细胞群的影响. 中外医疗. 2024(09): 31-34 .
    2. 张敏. 中医定向透药疗法对肺炎患儿临床疗效及炎性因子水平的影响. 反射疗法与康复医学. 2024(17): 8-10+17 .
    3. 李文艳,许志强. 呼吸机相关肺炎危重症患者使用合生元制剂联合肠内营养序贯治疗的临床研究. 中国药物与临床. 2024(20): 1341-1345 .
    4. 闵翼,殷智,潘旭. 清金降火汤治疗痰热壅肺型肺炎的临床研究. 航空航天医学杂志. 2023(01): 66-68 .
    5. 李思灵,颜沃志,廖夏萍. 纤维支气管镜下盐酸氨溴索注射液肺泡灌洗治疗COPD合并呼吸衰竭的效果. 中国医学创新. 2023(02): 50-54 .
    6. 郑相,范青红,邱芳晖. 清肺化痰汤联合西医常规治疗呼吸机相关性肺炎老年患者临床研究. 新中医. 2023(04): 21-24 .
    7. 董璐阳,张琳,李怡辉. 中医护理干预对呼吸机相关肺炎患者血气指标、生活质量的影响. 实用中医内科杂志. 2023(02): 80-83 .
    8. 丁鑫,钱占红. 升降散对脓毒症所致急性肺损伤小鼠的保护作用. 环球中医药. 2023(04): 591-597 .
    9. 罗志辉,王昆秀,张艳琳,陈子琴,陈贝,陈佳,周婷,顾骁磊,李崇立,闫鹏,田玲玲,徐驰成,陈柏霖,陈松,祁青. 回顾性分析三消饮加减方治疗轻型/普通型新型冠状病毒肺炎患者的临床疗效. 中国实验方剂学杂志. 2022(01): 150-156 .
    10. 周同鑫,石静娟,裴昶,曹振华,殷智,钱丽. “支炎一号”方治疗成人痰热壅肺型支气管扩张临床疗效分析. 中外医疗. 2022(02): 103-106 .
    11. 章文莉,汪芬华,陈梅. 天枢穴贴敷联合升降散保留灌肠治疗呼吸机相关性肺炎52例. 中国中医药科技. 2022(05): 931-932+935 .
    12. 马文静,张维利,刘素梅,祁佩红. 加味温胆汤对痰湿蕴肺型慢性阻塞性肺疾病急性加重期患者炎症细胞因子表达及BODE指数的影响. 中医药信息. 2022(09): 53-57+62 .
    13. 姜立娟,魏岩,张文风. 升降散证治探微. 长春中医药大学学报. 2022(10): 1063-1066 .
    14. 张爱宝,白小丽,成媛,薛云霞. 超声脉冲电导辅助治疗小儿支气管肺炎的临床观察. 中国民间疗法. 2021(15): 77-79 .
    15. 刘蓉. 心外科ICU呼吸机相关性肺炎患者病原菌的分布分析与研究. 名医. 2020(10): 85-86 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return