Citation: | YANG Shuangyue, JIN Xing, MENG Zhaoxiang, KE Minghui, ZHANG Minjie, CHEN Chen. Efficacy of low-frequency repetitive transcranial magnetic stimulation assisted virtual reality interactive robot training on function of upper limbs in patients with stroke[J]. Journal of Clinical Medicine in Practice, 2025, 29(1): 28-32. DOI: 10.7619/jcmp.20243115 |
To explore the efficacy of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with virtual reality interactive robot training in improving upper limb function of patients with stroke.
From February to December 2023, 92 patients in the hospital were randomly divided into control group (n=30), virtual reality group (n=31), and combined group (n=31). The control group received conventional rehabilitation therapy; the virtual reality group received conventional rehabilitation therapy and virtual reality interactive robot training for upper limb; the combined group received low-frequency rTMS on the therapeutic basis of the virtual reality group. Before treatment and 4 weeks after treatment, the Upper Extremity Fugl-Meyer Assessment (UFMA) score, the Functional Test for the Hemiplegic Upper Extremity-Hong Kong Version (FTHUE-HK) score, motor evoked potential (MEP) amplitude, cortical latency (CL) value, and the ratio of root mean square of myoelectricity (RMS) of wrist dorsiflexor muscles between the affected and unaffected sides were compared among the three groups.
Four weeks after treatment, the UFMA and FTHUE-HK scores of the three groups significantly improved compared with those before treatment, the UFMA and FTHUE-HK scores of the combined group were significantly higher than those of the control group and the virtual reality group, and the UFMA score of the virtual reality group was significantly higher than that of the control group (P < 0.05); the RMS ratios and MEP amplitudes of the three groups significantly increased compared with those before treatment, the RMS ratios and MEP amplitudes of the combined group were significantly higher than those of the control group and the virtual reality group, and the virtual reality group had higher values than the control group, with significant between-group differences (P < 0.05); the CL of the three groups significantly shortened compared with that before treatment, the CL of the combined group was significantly shorter than that of the control group and the virtual reality group, and the CL of the virtual reality group was significantly shorter than that of the control group (P < 0.05).
The rTMS assisted virtual reality interactive robot training can effectively improve upper limb function in stroke patients.
[1] |
《中国脑卒中防治报告》编写组. 我国脑卒中防治仍面临巨大挑战: 《中国脑卒中防治报告2018》概要[J]. 中国循环杂志, 2019, 34(2): 105-119. doi: 10.3969/j.issn.1000-3614.2019.02.001
|
[2] |
戴雨婷, 王清, 张敏, 等. 脑卒中患者运动康复偏好的概念分析[J]. 实用临床医药杂志, 2024, 28(8): 113-118. doi: 10.7619/jcmp.20233855
|
[3] |
TAKEBAYASHI T, TAKAHASHI K, AMANO S, et al. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: a randomized controlled trial[J]. Stroke, 2022, 53(7): 2182-2191. doi: 10.1161/STROKEAHA.121.037260
|
[4] |
赵德福, 景俊, 方琪, 等. 重复经颅磁刺激结合上肢机器人虚拟情景训练对脑卒中患者认知功能的研究[J]. 中国康复, 2020, 35(6): 295-298.
|
[5] |
MANN S K, MALHI N K. Repetitive transcranial magnetic stimulation. In: StatPearls[M]. Treasure Island (FL): StatPearls Publishing, 2023: 23-44.
|
[6] |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715.
|
[7] |
张宇婷, 黄颖珺, 马佼佼, 等. 上肢智能反馈机器人训练对脑卒中患者上肢功能及日常生活活动能力的影响[J]. 江苏医药, 2018, 44(10): 1206-1208.
|
[8] |
KIM D, KO S H, HAN J, et al. Evidence of the existence of multiple modules for the stroke-caused flexion synergy from Fugl-Meyer assessment scores[J]. J Neurophysiol, 2024, 132(1): 78-86. doi: 10.1152/jn.00067.2024
|
[9] |
LIZ L, DA SILVA T G, MICHAELSEN S M. Validity, reliability, and measurement error of the remote fugl-meyer assessment by videoconferencing: tele-FMA[J]. Phys Ther, 2023, 103(8): pzad054. doi: 10.1093/ptj/pzad054
|
[10] |
MCGILL K, SACKLEY C, GODWIN J, et al. Using the Barthel Index and modified Rankin Scale as Outcome Measures for Stroke Rehabilitation Trials; A Comparison of Minimum Sample Size Requirements[J]. J Stroke Cerebrovasc Dis, 2022, 31(2): 106229. doi: 10.1016/j.jstrokecerebrovasdis.2021.106229
|
[11] |
BIAN L, ZHANG L, HUANG G L, et al. Effects of priming intermittent Theta burst stimulation with high-definition tDCS on upper limb function in hemiparetic patients with stroke: a randomized controlled study[J]. Neurorehabil Neural Repair, 2024, 38(4): 268-278. doi: 10.1177/15459683241233259
|
[12] |
张妍昭, 黄琴, 王刚, 等. 香港版偏瘫上肢功能测试评定脑卒中患者上肢功能的效度和信度研究[J]. 中华物理医学与康复杂志, 2016, 38(11): 826-829. doi: 10.3760/cma.j.issn.0254-1424.2016.11.007
|
[13] |
DOHLE C. Rehabilitation nach Schlaganfall[Rehabilitation after stroke][J]. Dtsch Med Wochenschr, 2021, 146(12): 809-817. doi: 10.1055/a-1221-7126
|
[14] |
MARÍN-MEDINA D S, ARENAS-VARGAS P A, ARIAS-BOTERO J C, et al. New approaches to recovery after stroke[J]. Neurol Sci, 2024, 45(1): 55-63. doi: 10.1007/s10072-023-07012-3
|
[15] |
查梦园, 赵幸娟, 逯瑞. 基于神经可塑性探讨相关治疗方法对缺血性脑卒中患者的影响及作用机制[J]. 中国实用神经疾病杂志, 2024, 27(5): 654-660.
|
[16] |
贾杰. 脑卒中上肢康复: 手脑感知与手脑运动[J]. 中国康复医学杂志, 2020, 35(4): 385-389. doi: 10.3969/j.issn.1001-1242.2020.04.001
|
[17] |
殷稚飞, 沈滢, 戴文骏, 等. 低频重复经颅磁刺激在脑卒中后上肢运动功能康复中的研究和应用[J]. 中华物理医学与康复杂志, 2014, 36(6): 486-489. doi: 10.3760/cma.j.issn.0254-1424.2014.06.027
|
[18] |
刘沛, 刘宝斌. 重复磁刺激右侧大脑中动脉闭塞模型大鼠脑梗死区微环境及神经功能的变化[J]. 中国组织工程研究, 2015, 19(27): 4333-4338. doi: 10.3969/j.issn.2095-4344.2015.27.013
|
[19] |
ZONG X M, LI Y Y, LIU C, et al. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization[J]. Theranostics, 2020, 10(26): 12090-12110. doi: 10.7150/thno.51573
|
[20] |
杨云凤. 磁刺激引起神经元突触生长及迁移的机制研究[D]. 南充: 川北医学院, 2012.
|
[21] |
CHIEN W T, CHONG Y, TSE M K, et al. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: a systematic review and meta-analysis[J]. Brain Behav, 2020, 10(8): e01742. doi: 10.1002/brb3.1742
|
[22] |
吴丹, 罗欢欢, 黄柯, 等. 高频重复经颅磁刺激及高压氧对脑卒中后认知功能障碍患者的影响[J]. 实用临床医药杂志, 2023, 27(17): 13-17. doi: 10.7619/jcmp.20231235
|
[23] |
LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528. doi: 10.1016/j.clinph.2019.11.002
|
[24] |
TANG Z Q, LIU T H, HAN K Y, et al. The effects of rTMS on motor recovery after stroke: a systematic review of fMRI studies[J]. Neurol Sci, 2024, 45(3): 897-909. doi: 10.1007/s10072-023-07123-x
|
[25] |
李静, 王丽军, 王艳艳. 虚拟现实情景认知康复训练联合音乐疗法在卒中后认知障碍患者中的应用研究[J]. 实用临床医药杂志, 2024, 28(8): 123-126. doi: 10.7619/jcmp.20240680
|
[26] |
ROWE J B, CHAN V, INGEMANSON M L, et al. Robotic assistance for training finger movement using a hebbian model: a randomized controlled trial[J]. Neurorehabil Neural Repair, 2017, 31(8): 769-780. doi: 10.1177/1545968317721975
|
[27] |
ANWER S, WARIS A, GILANI S O, et al. Rehabilitation of upper limb motor impairment in stroke: a narrative review on the prevalence, risk factors, and economic statistics of stroke and state of the art therapies[J]. Healthcare, 2022, 10(2): 190. doi: 10.3390/healthcare10020190
|
[28] |
DU J, YANG F, HU J P, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments[J]. Neuroimage Clin, 2019, 21: 101620. doi: 10.1016/j.nicl.2018.101620
|