Citation: | GONG Yujia, LI Hailong, CAO Hui. Mechanism of circ-001209 on retinal angiogenesis in rats with diabetic retinopathy by regulating interleukin-33/suppression of tumorigenicity 2 signaling pathway[J]. Journal of Clinical Medicine in Practice, 2025, 29(4): 23-18, 33. DOI: 10.7619/jcmp.20243144 |
To investigate the mechanism of circ-001209 on retinal angiogenesis in rats with diabetic retinopathy (DR) by regulating the interleukin-33/suppression of tumorigenicity 2 (IL-33/ST2) signaling pathway.
Fifty rats were randomly divided into Col group, DR group, si-circ-NC group, si-circ-001209 group, and si-circ-001209+IL-33 group, with 10 rats in each group. The levels of fasting plasma glucose (FPG) and fasting insulin (FINS) in rats were detected; fundus fluorescein angiography (FFA) was used to detect retinal angiogenesis; the enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of angiogenesis-related factors and inflammatory factors in serum; the hematoxylin-eosin (HE) staining was used to detect histopathological changes in the retina; the periodic acid-Schiff (PAS) staining was used to detect the number of retinal microvascular formations; the Western blotting was used to detect the protein expression levels of IL-33, ST2, vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), and intercellular adhesion molecule-1 (ICAM-1) in retinal tissues.
Compared with the Col group, the DR group and si-circ-NC group showed significant increase in levels of FPG, FINS, serum VEGF, angiopoietin-1 (Ang-1), IL-6, IL-33, tumor necrosis factor-α (TNF-α), the number of microvascular formation, and the protein expression levels of IL-33, ST2, VEGF, HIF-1α, and ICAM-1 in retinal tissues (P < 0.05); the si-circ-001209 group showed significant decrease in levels of FPG, FINS, serum VEGF, Ang-1, IL-6, IL-33, TNF-α, the number of microvascular formation, and the protein expression levels of IL-33, ST2, VEGF, HIF-1α, and ICAM-1 in retinal tissues compared with the si-circ-NC group (P < 0.05); the si-circ-001209+IL-33 group showed significant increase in levels of FPG, FINS, serum VEGF, Ang-1, IL-6, IL-33, TNF-α, the number of microvascular formations, and the protein expression levels of IL-33, ST2, VEGF, HIF-1α, and ICAM-1 in retinal tissues compared with the si-circ-001209 group (P < 0.05).
Knockdown of circ-001209 can inhibit retinal angiogenesis in rats with DR, potentially through inhibiting the activation of the IL-33/ST2 signaling pathway and reducing inflammation.
[1] |
CHEN Y, SCHLOTTERER A, KUROWSKI L, et al. miRNA-124 prevents rat diabetic retinopathy by inhibiting the microglial inflammatory response[J]. Int J Mol Sci, 2023, 24(3): 2291. doi: 10.3390/ijms24032291
|
[2] |
MILLS S A, JOBLING A I, DIXON M A, et al. Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy[J]. Proc Natl Acad Sci U S A, 2021, 118(51): e2112561118. doi: 10.1073/pnas.2112561118
|
[3] |
CHEN Y Q, YAO G H, TONG J, et al. MSC-derived small extracellular vesicles alleviate diabetic retinopathy by delivering miR-22-3p to inhibit NLRP3 inflammasome activation[J]. Stem Cells, 2024, 42(1): 64-75. doi: 10.1093/stmcls/sxad078
|
[4] |
LI Y, ZHU L P, CAI M X, et al. TGR5 supresses cGAS/STING pathway by inhibiting GRP75-mediated endoplasmic reticulum-mitochondrial coupling in diabetic retinopathy[J]. Cell Death Dis, 2023, 14(9): 583. doi: 10.1038/s41419-023-06111-5
|
[5] |
ZHOU Y L, XU Z D, LIU Z Q. Role of IL-33-ST2 pathway in regulating inflammation: current evidence and future perspectives[J]. J Transl Med, 2023, 21(1): 902. doi: 10.1186/s12967-023-04782-4
|
[6] |
MEHRABI NASAB E, HASSANZADEH MAKOEI R, AGHAJANI H, et al. IL-33/ST2 pathway as upper-hand of inflammation in allergic asthma contributes as predictive biomarker in heart failure[J]. ESC Heart Fail, 2022, 9(6): 3785-3790. doi: 10.1002/ehf2.14111
|
[7] |
GUNGOR O, UNAL H U, GUCLU A, et al. IL-33 and ST2 levels in chronic kidney disease: associations with inflammation, vascular abnormalities, cardiovascular events, and survival[J]. PLoS One, 2017, 12(6): e0178939. doi: 10.1371/journal.pone.0178939
|
[8] |
YANG J H, TAN C Y, WANG Y, et al. The circRNA MKLN1 regulates autophagy in the development of diabetic retinopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(8): 166839. doi: 10.1016/j.bbadis.2023.166839
|
[9] |
ZHANG Y T, HU J P, QU X Y, et al. Circular RNA RSU1 promotes retinal vascular dysfunction by regulating miR-345-3p/TAZ[J]. Commun Biol, 2023, 6(1): 719. doi: 10.1038/s42003-023-05064-x
|
[10] |
WANG F, ZHANG M X. Circ_001209 aggravates diabetic retinal vascular dysfunction through regulating miR-15b-5p/COL12A1[J]. J Transl Med, 2021, 19(1): 294. doi: 10.1186/s12967-021-02949-5
|
[11] |
LI H D, LIU C Y, ZHANG J Y, et al. The association of homocysteine level with the risk of diabetic nephropathy and diabetic retinopathy in NHANES[J]. Acta Diabetol, 2023, 60(7): 907-916. doi: 10.1007/s00592-023-02075-2
|
[12] |
JI F, ZHANG H J, GE Q. Effect of IP-10/CXCR3 signaling pathway on rats with diabetic retinopathy[J]. Cell Mol Biol, 2023, 69(11): 233-238. doi: 10.14715/cmb/2023.69.11.35
|
[13] |
WANG Y, ZHANG Y X, QU Y H, et al. eIF4A3-mediated circEHMT1 regulation in retinal microvascular endothelial dysfunction in diabetic retinopathy[J]. Microvasc Res, 2024, 151: 104612. doi: 10.1016/j.mvr.2023.104612
|
[14] |
WANG T, LI C P, SHI M, et al. Circular RNA circZNF532 facilitates angiogenesis and inflammation in diabetic retinopathy via regulating miR-1243/CARM1 axis[J]. Diabetol Metab Syndr, 2022, 14(1): 14. doi: 10.1186/s13098-022-00787-z
|
[15] |
AI X P, YU P L, LUO L L, et al. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway[J]. J Ethnopharmacol, 2022, 296: 115453. doi: 10.1016/j.jep.2022.115453
|
[16] |
CHEN X, WANG Y, WANG J N, et al. Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy[J]. EMBO Mol Med, 2024, 16(2): 294-318. doi: 10.1038/s44321-024-00025-1
|
[17] |
苏杰, 杨馥宇, 李猛, 等. 京尼平苷对糖尿病视网膜病变大鼠视网膜微血管生成的影响及其机制[J]. 眼科新进展, 2023, 43(9): 703-707, 711.
|
[18] |
TANG L, XU G T, ZHANG J F. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy[J]. Neural Regen Res, 2023, 18(5): 976-982. doi: 10.4103/1673-5374.355743
|
[19] |
韩璐, 黄铁军, 马雅琪, 等. 白介素33及其受体ST2与心脏重塑关系的研究进展[J]. 湖北科技学院学报: 医学版, 2022, 36(5): 448-451.
|
[20] |
帅天姣, 王彤彤, 谢伟, 等. 黄芩苷调节IL-33/ST2信号通路对糖尿病视网膜病变大鼠视网膜新生血管生成的影响[J]. 眼科新进展, 2022, 42(9): 685-689.
|
1. |
樊佳,牛柳,刘虹,梁毅. 七氟烷麻醉对老年外科手术患者心肺保护机制的研究进展. 老年医学与保健. 2024(04): 1189-1192 .
![]() | |
2. |
杨欢,韩静霏,雷彦燕,姜巧巧,邓莉,邹田田. 右美托咪定对合并冠心病的老年髋/膝关节置换术患者围手术期心肌损伤的影响. 川北医学院学报. 2023(09): 1210-1213 .
![]() |