Citation: | WANG Yulin, YANG Dandan, LI Wenwen, LYU Xiaojun, ZHANG Xiaoqian. Bibliometrics-based analysis of research hotspots and trends in microbial-gut-brain axis[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 43-49. DOI: 10.7619/jcmp.20245847 |
To explore the research hotspots and development trends of microbiota-gut-brain axis (MGBA) related literature both domestically and internationally.
Relevant MGBA literature from 2000 to 2023 was retrieved from the Web of Science Core Collection, and bibliometric and visualization analyses were conducted using CiteSpace 6.3. R1 software.
A total of 857 MGBA-related articles were analyzed. China and the United States are representative countries in this field, with CRYAN J F and University College Cork being the most influential author and the most productive institution, respectively. In recent years, high-frequency research had focused on neurodegenerative diseases, intra- and extra-axis interactions with the body, and interventions involving short-chain fatty acids (SCFAs), tryptophan metabolism and serotonin.
The research in MGBA continues to be hotspot, and the research focus gradually transit from the verification of the relationship with diseases to the intra-axis interaction mechanism. The research hotspot of nervous system related diseases has been enduring in this field, and the therapeutic measures targeting the metabolites of intestinal flora and metabolomics are expected to become the future research trend in this field.
[1] |
CRYAN J F, O'RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. doi: 10.1152/physrev.00018.2018
|
[2] |
OSADCHIY V, MARTIN C R, MAYER E A. The gut-brain axis and the microbiome: mechanisms and clinical implications[J]. Clin Gastroenterol Hepatol, 2019, 17(2): 322-332. doi: 10.1016/j.cgh.2018.10.002
|
[3] |
SOCAŁA K, DOBOSZEWSKA U, SZOPA A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders[J]. Pharmacol Res, 2021, 172: 105840. doi: 10.1016/j.phrs.2021.105840
|
[4] |
MARTIN C R, OSADCHIY V, KALANI A, et al. The brain-gut-microbiome axis[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 133-148. doi: 10.1016/j.jcmgh.2018.04.003
|
[5] |
SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol (Lausanne), 2020, 11: 25. doi: 10.3389/fendo.2020.00025
|
[6] |
INCHINGOLO A M, PATANO A, PIRAS F, et al. Interconnection between microbiota-gut-brain axis and autism spectrum disorder comparing therapeutic options: a scoping review[J]. Microorganisms, 2023, 11(6): 1477. doi: 10.3390/microorganisms11061477
|
[7] |
DALILE B, VAN OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478. doi: 10.1038/s41575-019-0157-3
|
[8] |
LLOYD-PRICE J, MAHURKAR A, RAHNAVARD G, et al. Strains, functions and dynamics in the expanded human microbiome project[J]. Nature, 2017, 550(7674): 61-66. doi: 10.1038/nature23889
|
[9] |
Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project[J]. Nature, 2019, 569(7758): 641-648. doi: 10.1038/s41586-019-1238-8
|
[10] |
CREASY H H, FELIX V, ALUVATHINGAL J, et al. HMPDACC: a Human Microbiome Project Multi-omic data resource[J]. Nucleic Acids Res, 2021, 49(D1): D734-D742. doi: 10.1093/nar/gkaa996
|
[11] |
CRYAN J F, SWEENEY F F. The age of anxiety: role of animal models of anxiolytic action in drug discovery[J]. Br J Pharmacol, 2011, 164(4): 1129-1161. doi: 10.1111/j.1476-5381.2011.01362.x
|
[12] |
DINAN T G, CRYAN J F. Mood by microbe: towards clinical translation[J]. Genome Med, 2016, 8(1): 36. doi: 10.1186/s13073-016-0292-1
|
[13] |
SCHELLEKENS H, TORRES-FUENTES C, VAN DE WOUW M, et al. Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human[J]. EBioMedicine, 2021, 63: 103176. doi: 10.1016/j.ebiom.2020.103176
|
[14] |
BORRE Y E, O'KEEFFE G W, CLARKE G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders[J]. Trends Mol Med, 2014, 20(9): 509-518. doi: 10.1016/j.molmed.2014.05.002
|
[15] |
BRAVO J A, FORSYTHE P, CHEW M V, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proc Natl Acad Sci USA, 2011, 108(38): 16050-16055. doi: 10.1073/pnas.1102999108
|
[16] |
BUROKAS A, ARBOLEYA S, MOLONEY R D, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice[J]. Biol Psychiatry, 2017, 82(7): 472-487. doi: 10.1016/j.biopsych.2016.12.031
|
[17] |
PALEPU M S K, GAJULA S N R, K M, et al. SCFAs supplementation rescues anxiety- and depression-like phenotypes generated by fecal engraftment of treatment-resistant depression rats[J]. ACS Chem Neurosci, 2024, 15(5): 1010-1025. doi: 10.1021/acschemneuro.3c00727
|
[18] |
GAYKEMA R P A, GOEHLER L E, LYTE M. Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry[J]. Brain Behav Immun, 2004, 18(3): 238-245. doi: 10.1016/j.bbi.2003.08.002
|
[19] |
SHARON G, CRUZ N J, KANG D W, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice[J]. Cell, 2019, 177(6): 1600-1618. e17. doi: 10.1016/j.cell.2019.05.004
|
[20] |
KELLY J R, BORRE Y, O'BRIEN C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res, 2016, 82: 109-118. doi: 10.1016/j.jpsychires.2016.07.019
|
[21] |
DICKS L M T, HURN D, HERMANUS D. Gut bacteria and neuropsychiatric disorders[J]. Microorganisms, 2021, 9(12): 2583. doi: 10.3390/microorganisms9122583
|
[22] |
CHEN B D, SUN L X, ZHANG X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases[J]. J Autoimmun, 2017, 83: 31-42. doi: 10.1016/j.jaut.2017.03.009
|
[23] |
LIN M Y, DE ZOETE M R, VAN PUTTEN J P M, et al. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases[J]. Front Immunol, 2015, 6: 554.
|
[24] |
FINEGOLD S M, DOWD S E, GONTCHAROVA V, et al. Pyrosequencing study of fecal microflora of autistic and control children[J]. Anaerobe, 2010, 16(4): 444-453. doi: 10.1016/j.anaerobe.2010.06.008
|
[25] |
SHULTZ S R, MACFABE D F, MARTIN S, et al. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism[J]. Behav Brain Res, 2009, 200(1): 33-41. doi: 10.1016/j.bbr.2008.12.023
|
[26] |
DE THEIJE C G M, WOPEREIS H, RAMADAN M, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders[J]. Brain Behav Immun, 2014, 37: 197-206. doi: 10.1016/j.bbi.2013.12.005
|
[27] |
LEFTER R, CIOBICA A, TIMOFTE D, et al. A descriptive review on the prevalence of gastrointestinal disturbances and their multiple associations in autism spectrum disorder[J]. Medicina (Kaunas), 2019, 56(1): 11. doi: 10.3390/medicina56010011
|
[28] |
NIRMALKAR K, QURESHI F, KANG D W, et al. Shotgun metagenomics study suggests alteration in sulfur metabolism and oxidative stress in children with autism and improvement after microbiota transfer therapy[J]. Int J Mol Sci, 2022, 23(21): 13481. doi: 10.3390/ijms232113481
|
[29] |
IOVENE M R, BOMBACE F, MARESCA R, et al. Intestinal dysbiosis and yeast isolation in stool of subjects with autism spectrum disorders[J]. Mycopathologia, 2017, 182(3/4): 349-363.
|
[30] |
HO L, ONO K, TSUJI M, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J]. Expert Rev Neurother, 2018, 18(1): 83-90. doi: 10.1080/14737175.2018.1400909
|
[31] |
DINAN T G, STILLING R M, STANTON C, et al. Collective unconscious: how gut microbes shape human behavior[J]. J Psychiatr Res, 2015, 63: 1-9. doi: 10.1016/j.jpsychires.2015.02.021
|
[32] |
YANO J M, YU K, DONALDSON G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. doi: 10.1016/j.cell.2015.02.047
|
[33] |
MARX W, MCGUINNESS A J, ROCKS T, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies[J]. Mol Psychiatry, 2021, 26(8): 4158-4178. doi: 10.1038/s41380-020-00951-9
|
[34] |
COLLE R, MASSON P, VERSTUYFT C, et al. Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: a case-control study[J]. Psychiatry Clin Neurosci, 2020, 74(2): 112-117. doi: 10.1111/pcn.12944
|
[35] |
SHARON G, SAMPSON T R, GESCHWIND D H, et al. The central nervous system and the gut microbiome[J]. Cell, 2016, 167(4): 915-932. doi: 10.1016/j.cell.2016.10.027
|
[36] |
MESSAOUDI M, LALONDE R, VIOLLE N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects[J]. Br J Nutr, 2011, 105(5): 755-764. doi: 10.1017/S0007114510004319
|