Citation: | ZANG Yuezhen, ZHANG Mingzhu, ZHU Lingling. Analysis of influencing factors of long-term neurological development in premature infants with brain injury[J]. Journal of Clinical Medicine in Practice, 2021, 25(1): 113-116. DOI: 10.7619/jcmp.20200072 |
[1] |
BENAVENTE-FERNÁNDEZ I, SIDDIQI A, MILLER S P. Socioeconomic status and brain injury in children born preterm: modifying neurodevelopmental outcome[J]. Pediatr Res, 2020, 87(2): 391-398. doi: 10.1038/s41390-019-0646-7
|
[2] |
REICH B, HOEBER D, BENDIX I, et al. Hyperoxia and the immature brain[J]. Dev Neurosci, 2016, 38(5): 311-330. doi: 10.1159/000454917
|
[3] |
中国医师协会新生儿专业委员会. 早产儿脑损伤诊断与防治专家共识[J]. 中国当代儿科杂志, 2012, 14(12): 883-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DDKZ201212001.htm
|
[4] |
DAPAAH-SIAKWAN F, ZAMBRANO R, LUO S H, et al. Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 61(3): 341-354. doi: 10.1165/rcmb.2018-0192OC
|
[5] |
GOUSSAKOV I, SYNOWIEC S, YARNYKH V, et al. Immediate and delayed decrease of long term potentiation and memory deficits after neonatal intermittent hypoxia[J]. Int J Dev Neurosci, 2019, 74: 27-37. doi: 10.1016/j.ijdevneu.2019.03.001
|
[6] |
ALY S, EL-DIB M, LU Z G, et al. Factors affecting cerebrovascular reactivity to CO2 in premature infants[J]. J Perinat Med, 2019, 47(9): 979-985. doi: 10.1515/jpm-2019-0031
|
[7] |
THOME U H, DREYHAUPT J, GENZEL-BOROVICZENY O, et al. Influence of pa(CO2)control on clinical and neurodevelopmental outcomes of extremely low birth weight infants[J]. Neonatology, 2018, 113(3): 221-230. doi: 10.1159/000485828
|
[8] |
王亚静, 李杨, 孙静, 等. 新生儿重症监护病房患儿操作性疼痛现状调查[J]. 护理学杂志, 2019, 34(11): 20-23. doi: 10.3870/j.issn.1001-4152.2019.11.020
|
[9] |
李梦婷, 陈朔晖. 新生儿疼痛表情自动识别系统的研究进展[J]. 中华护理杂志, 2019, 54(11): 1644-1647. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHHL201911011.htm
|
[10] |
VINALL J, GRUNAU R E. Impact of repeated procedural pain-related stress in infants born very preterm[J]. Pediatr Res, 2014, 75(5): 584-587. doi: 10.1038/pr.2014.16
|
[11] |
LOUREIRO B, MARTINEZ-BIARGE M, FOTI F, et al. MRI Patterns of brain injury and neurodevelopmental outcomes in neonates with severe anaemia at birth[J]. Early Hum Dev, 2017, 105: 17-22. doi: 10.1016/j.earlhumdev.2017.01.001
|
[12] |
ZONNENBERG I A, VERMEULEN R J, ROHAAN M W, et al. Severe neonatal anaemia, MRI findings and neurodevelopmental outcome[J]. Neonatology, 2016, 109(4): 282-288. doi: 10.1159/000443320
|
[13] |
KRATIMENOS P, CHRISTIDIS P, KEHINDE F, et al. Association between hemoglobin concentrations at discharge from the neonatal intensive care unit with markers of neurodevelopmental outcomes in premature neonates[J]. J Neonatal Perinatal Med, 2019, 12(2): 221-230. doi: 10.3233/NPM-1822
|
[14] |
HORTA B L, LORET DE MOLA C, VICTORA C G. Breastfeeding and intelligence: a systematic review and meta-analysis[J]. Acta Paediatr, 2015, 104(467): 14-19. h http://www.ncbi.nlm.nih.gov/pubmed/26211556?dopt=Abstract
|
[15] |
OTTOLINI K M, ANDESCAVAGE N, KAPSE K, et al. Improved brain growth and microstructural development in breast milk-fed very low birth weight premature infants[J]. Acta Paediatr, 2020, 109(8): 1580-1587. doi: 10.1111/apa.15168
|
[16] |
KELLER T, KÖRBER F, OBERTHUER A, et al. Intranasal breast milk for premature infants with severe intraventricular hemorrhage-an observation[J]. Eur J Pediatr, 2019, 178(2): 199-206. doi: 10.1007/s00431-018-3279-7
|
[17] |
COVIELLO C, KEUNEN K, KERSBERGEN K J, et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns[J]. Pediatr Res, 2018, 83(1): 102-110. doi: 10.1038/pr.2017.227
|
[18] |
CAI S, THOMPSON D K, ANDERSON P J, et al. Short-and long-term neurodevelopmental outcomes of very preterm infants with neonatal sepsis: a systematic review and meta-analysis[J]. Children(Basel), 2019, 6(12): E131. http://www.researchgate.net/publication/337688077_Short-_and_Long-Term_Neurodevelopmental_Outcomes_of_Very_Preterm_Infants_with_Neonatal_Sepsis_A_Systematic_Review_and_Meta-Analysis
|
[19] |
RALLIS D, KARAGIANNI P, GOUTSIOU E, et al. The association of the cerebral oxygenation during neonatal Sepsis with the Bayley-Ⅲ Scale of Infant and Toddler Development index scores at 18-24 months of age[J]. Early Hum Dev, 2019, 136: 49-53. doi: 10.1016/j.earlhumdev.2019.07.008
|
[20] |
HASLER H M, BROWN T T, AKSHOOMOFF N. Variations in brain morphometry among healthy preschoolers born preterm[J]. Early Hum Dev, 2019, 140: 104929. http://www.sciencedirect.com/science/article/pii/S0378378219303494
|
[21] |
WANG Y F, WU Y N, LI T, et al. Iron metabolism and brain development in premature infants[J]. Front Physiol, 2019, 10: 463-464. doi: 10.3389/fphys.2019.00463
|
[22] |
WU Y N, SONG J, WANG Y F, et al. The potential role of ferroptosis in neonatal brain injury[J]. Front Neurosci, 2019, 13: 115-116. doi: 10.3389/fnins.2019.00115
|
[23] |
MORENO-FERNANDEZ J, OCHOA J J, LATUNDE-DADA G O, et al. Iron deficiency and iron homeostasis in low birth weight preterm infants: a systematic review[J]. Nutrients, 2019, 11(5): 1090-1091. doi: 10.3390/nu11051090
|
[24] |
WERTH J, ATALLAH L, ANDRIESSEN P, et al. Unobtrusive sleep state measurements in preterm infants-A review[J]. Sleep Med Rev, 2017, 32: 109-122. doi: 10.1016/j.smrv.2016.03.005
|
[25] |
HAGMANN-VON ARX P, PERKINSON-GLOOR N, BRAND S, et al. In school-age children who were born very preterm sleep efficiency is associated with cognitive function[J]. Neuropsychobiology, 2014, 70(4): 244-252. doi: 10.1159/000369026
|
[26] |
VERSCHUREN O, GORTER J W, PRITCHARD-WIART L. Sleep: an underemphasized aspect of health and development in neurorehabilitation[J]. Early Hum Dev, 2017, 113: 120-128. doi: 10.1016/j.earlhumdev.2017.07.006
|
[27] |
PITTET-METRAILLER M P, MÜRNER-LAVANCHY I, ADAMS M, et al. Neurodevelopmental outcome at early school age in a Swiss national cohort of very preterm children[J]. Swiss Med Wkly, 2019, 149: w20084. http://www.researchgate.net/publication/333561100_Neurodevelopmental_outcome_at_early_school_age_in_a_Swiss_national_cohort_of_very_preterm_children
|
[28] |
BENAVENTE-FERNÁNDEZ I, SYNNES A, GRUNAU R E, et al. Association of socioeconomic status and brain injury with neurodevelopmental outcomes of very preterm children[J]. JAMA Netw Open, 2019, 2(5): e192914. doi: 10.1001/jamanetworkopen.2019.2914
|
[29] |
CHENG X R, XIA P G, SHI Z Y, et al. Increased risk of intracranial hemorrhage in preterm infants with OPRM1 gene A118G polymorphism[J]. Ann Transl Med, 2019, 7(18): 478-486. doi: 10.21037/atm.2019.08.53
|
[30] |
JABLONSKA B, GIERDALSKI M, CHEW L J, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury[J]. Nat Commun, 2016, 7: 13866. doi: 10.1038/ncomms13866
|
[31] |
MITSIALIS S A, KOUREMBANAS S. Stem cell-based therapies for the newborn lung and brain: Possibilities and challenges[J]. Semin Perinatol, 2016, 40(3): 138-151. doi: 10.1053/j.semperi.2015.12.002
|
[32] |
MCDONALD C A, DJULIANNISAA Z, PETRAKI M, et al. Intranasal delivery of mesenchymal stromal cells protects against neonatal Hypoxic Ischemic brain injury[J]. Int J Mol Sci, 2019, 20(10): E2449. doi: 10.3390/ijms20102449
|