Citation: | HUANG Weiyan, ZHANG Wenqing, ZHENG Shihao. Bioinformatic analysis of differentially expressed genes in muscle atrophy tissues after spinal cord injury[J]. Journal of Clinical Medicine in Practice, 2021, 25(4): 1-6. DOI: 10.7619/jcmp.20201641 |
[1] |
AHUJA C S, WILSON J R, NORI S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3: 17018. doi: 10.1038/nrdp.2017.18
|
[2] |
NEW P W, BIERING-SØRENSEN F. Review of the history of non-traumatic spinal cord dysfunction[J]. Top Spinal Cord Inj Rehabil, 2017, 23(4): 285-298. doi: 10.1310/sci2304-285
|
[3] |
GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(1): 56-87. doi: 10.1016/S1474-4422(18)30415-0
|
[4] |
EBERT SM, AL-ZOUGBI A, BODINE SC, et al. Skeletal Muscle Atrophy: Discovery of Mechanisms and Potential Therapies[J]. Physiology (Bethesda). 2019 Jul 1; 34(4): 232-239.
|
[5] |
HYATT H, DEMINICE R, YOSHIHARA T, et al. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: a review of the causes and effects[J]. Arch Biochem Biophys, 2019, 662: 49-60. doi: 10.1016/j.abb.2018.11.005
|
[6] |
GORGEY A S, KHALIL R E, LESTER R M, et al. Paradigms of lower extremity electrical stimulation training after spinal cord injury[J]. J Vis Exp, 2018(132): 57000. http://europepmc.org/abstract/MED/29443103
|
[7] |
CASTRO M J, APPLE D F, HILLEGASS E A, et al. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury[J]. Eur J Appl Physiol Occup Physiol, 1999, 80(4): 373-378. doi: 10.1007/s004210050606
|
[8] |
SALTZSTEIN R J, HARDIN S, HASTINGS J. Osteoporosis in spinal cord injury: using an index of mobility and its relationship to bone density[J]. J Am Paraplegia Soc, 1992, 15(4): 232-234. doi: 10.1080/01952307.1992.11761524
|
[9] |
NOMURA T, KAWAE T, KATAOKA H, et al. Assessment of lower extremity muscle mass, muscle strength, and exercise therapy in elderly patients with diabetes mellitus[J]. Environ Health Prev Med, 2018, 23(1): 20. doi: 10.1186/s12199-018-0710-7
|
[10] |
ITOH M, ENDO M Y, HOJO T, et al. Characteristics of cardiovascular responses to an orthostatic challenge in trained spinal cord-injured individuals[J]. J Physiol Anthropol, 2018, 37(1): 22. doi: 10.1186/s40101-018-0182-x
|
[11] |
SASAKI K I, MATSUSE H, AKIMOTO R, et al. Cardiac cycle-synchronized electrical muscle Stimulator for lower limb training with the potential to reduce the heart's pumping workload[J]. PLoS One, 2017, 12(11): e0187395. doi: 10.1371/journal.pone.0187395
|
[12] |
CHEN Z, LI L, XU S N, et al. A Cdh1-FoxM1-Apc axis controls muscle development and regeneration[J]. Cell Death Dis, 2020, 11(3): 180. doi: 10.1038/s41419-020-2375-6
|
[13] |
CRISTOFANI R, RUSMINI P, GALBIATI M, et al. The regulation of the small heat shock protein B8 in misfolding protein diseases causing motoneuronal and muscle cell death[J]. Front Neurosci, 2019, 13: 796. doi: 10.3389/fnins.2019.00796
|
[14] |
ZHANG C C, WANG C X, LI Y L, et al. Complement C3a signaling facilitates skeletal muscle regeneration by regulating monocyte function and trafficking[J]. Nat Commun, 2017, 8(1): 2078. doi: 10.1038/s41467-017-01526-z
|
[15] |
LINK W. Introduction to FOXO biology[J]. Methods Mol Biol, 2019, 1890: 1-9. doi: 10.1007/978-1-4939-8900-3_1
|
[16] |
BROCCA L, TONIOLO L, REGGIANI C, et al. FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension[J]. J Physiol, 2017, 595(4): 1143-1158. doi: 10.1113/JP273097
|
[17] |
MILAN G, ROMANELLO V, PESCATORE F, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy[J]. Nat Commun, 2015, 6: 6670. doi: 10.1038/ncomms7670
|
[18] |
NINFALI C, SILES L, DARLING D S, et al. Regulation of muscle atrophy-related genes by the opposing transcriptional activities of ZEB1/CtBP and FOXO3[J]. Nucleic Acids Res, 2018, 46(20): 10697-10708. http://www.researchgate.net/publication/328250385_Regulation_of_muscle_atrophy-related_genes_by_the_opposing_transcriptional_activities_of_ZEB1CtBP_and_FOXO3/download
|
[19] |
ABDULLAH M, KORNEGAY J N, HONCOOP A, et al. Non-targeted metabolomics analysis of golden retriever muscular dystrophy-affected muscles reveals alterations in arginine and proline metabolism, and elevations in glutamic and oleic acid in vivo[J]. Metabolites, 2017, 7(3): E38. doi: 10.3390/metabo7030038
|
[20] |
SHENG J J, JIN J P. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships[J]. Gene, 2016, 576(1 Pt 3): 385-394. doi: 10.1016/j.gene.2015.10.052
|
[21] |
LAMBOLEY C R, WYCKELSMA V L, PERRY BD, et al. Effect of 23-day muscle disuse on sarcoplasmic reticulum Ca2+ properties and contractility in human type I and type II skeletal muscle fibers[J]. J Appl Physiol (1985), 2016, 121(2): 483-492. doi: 10.1152/japplphysiol.00337.2016
|
[22] |
CAO T, THONGAM U, JIN J P. Invertebrate troponin: Insights into the evolution and regulation of striated muscle contraction[J]. Arch Biochem Biophys, 2019, 666: 40-45. doi: 10.1016/j.abb.2019.03.013
|
[23] |
XIROUCHAKI C E, MANGIAFICO S P, BATE K, et al. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1(gys1) deletion in adult mice[J]. Mol Metab, 2016, 5(3): 221-232. doi: 10.1016/j.molmet.2016.01.004
|
[24] |
DE JONGE R R, VAN SCHAIK I N, VREIJLING J P, et al. Expression of complement components in the peripheral nervous system[J]. Hum Mol Genet, 2004, 13(3): 295-302. http://hmg.oxfordjournals.org/content/13/3/295.full
|
[25] |
MCGONIGAL R, CUNNINGHAM M E, YAO D G, et al. C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy[J]. Acta Neuropathol Commun, 2016, 4: 23. doi: 10.1186/s40478-016-0291-x
|
[26] |
LI G S, LI Q F, DONG M M, et al. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration[J]. Neural Regen Res, 2016, 11(4): 682-686. doi: 10.4103/1673-5374.180758
|
[27] |
HODGE B A, ZHANG X P, GUTIERREZ-MONREAL M A, et al. MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle[J]. Elife, 2019, 8: e43017. doi: 10.7554/eLife.43017
|
[28] |
JENDELOVA P. Therapeutic Strategies for Spinal Cord Injury[J]. International Journal of Molecular Sciences, 2018, 19(10): 3200. doi: 10.3390/ijms19103200
|
[29] |
KAKABADZE Z, KIPSHIDZE N, MARDALEISHVILI K, et al. Phase 1 trial of autologous bone marrow stem cell transplantation in patients with spinal cord injury[J]. Stem Cells Int, 2016, 2016: 6768274. http://europepmc.org/articles/PMC4940566/
|
[30] |
MOORE P D, GORGEY A S, WADE R C, et al. Neuromuscular electrical stimulation and testosterone did not influence heterotopic ossification size after spinal cord injury: a case series[J]. World J Clin Cases, 2016, 4(7): 172-176. doi: 10.12998/wjcc.v4.i7.172
|
[31] |
KODANI A, KIKUCHI T, TOHDA C. Acteoside improves muscle atrophy and motor function by inducing new myokine secretion in chronic spinal cord injury[J]. J Neurotrauma, 2019, 36(12): 1935-1948. doi: 10.1089/neu.2018.6000
|
[32] |
AHUJA C S, MARTIN A R, FEHLINGS M. Recent advances in managing a spinal cord injury secondary to trauma[J]. F1000Res, 2016, 5: F1000 Faculty Rev-1017. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890313/
|
[33] |
TANAKA C, TAGAMI T, KANEKO J, et al. Early versus late surgery after cervical spinal cord injury: a Japanese nationwide trauma database study[J]. J Orthop Surg Res, 2019, 14(1): 302. doi: 10.1186/s13018-019-1341-4
|
[34] |
ROSENBERG L J, TENG Y D, WRATHALL J R. Effects of the sodium channel blocker tetrodotoxin on acute white matter pathology after experimental contusive spinal cord injury[J]. J Neurosci, 1999, 19(14): 6122-6133. doi: 10.1523/JNEUROSCI.19-14-06122.1999
|
[35] |
KAPTANOGLU E, SOLAROGLU I, SURUCU H S, et al. Blockade of sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury[J]. Acta Neurochir (Wien), 2005, 147(4): 405-412. doi: 10.1007/s00701-004-0447-5
|
[36] |
LI J, GUO W C, XIONG M, et al. Effect of SDF-1/CXCR4 axis on the migration of transplanted bone mesenchymal stem cells mobilized by erythropoietin toward lesion sites following spinal cord injury[J]. Int J Mol Med, 2015, 36(5): 1205-1214. doi: 10.3892/ijmm.2015.2344
|
[37] |
KUCIA M, JANKOWSKI K, RECA R, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion[J]. J Mol Histol, 2004, 35(3): 233-245. http://www.tandfonline.com/servlet/linkout?suffix=CIT0086&dbid=16&doi=10.3109%2F09553002.2014.906766&key=10.1023%2FB%3AHIJO.0000032355.66152.b8
|
[38] |
FEHLINGS M G, TETREAULT L A, WILSON J R, et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope[J]. Global Spine J, 2017, 7(3 Suppl): 84S-94S. http://europepmc.org/articles/PMC5684846/
|
[39] |
EVANIEW N, BELLEY-CÔTÉ E P, FALLAH N, et al. Methylprednisolone for the treatment of patients with acute spinal cord injuries: a systematic review and meta-analysis[J]. J Neurotrauma, 2016, 33(5): 468-481. doi: 10.1089/neu.2015.4192
|
[40] |
FEHLINGS M G, WILSON J R, HARROP J S, et al. Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review[J]. Global Spine J, 2017, 7(3 Suppl): 116S-137S. http://europepmc.org/articles/PMC5684849/
|
[41] |
CABRERA-ALDANA E E, RUELAS F, ARANDA C, et al. Methylprednisolone administration following spinal cord injury reduces aquaporin 4 expression and exacerbates edema[J]. Mediators Inflamm, 2017, 2017: 4792932.
|
[42] |
GAZDIC M, VOLAREVIC V, HARRELL C R, et al. Stem cells therapy for spinal cord injury[J]. Int J Mol Sci, 2018, 19(4): E1039. doi: 10.3390/ijms19041039
|
[43] |
NAGOSHI N, TSUJI O, NAKAMURA M, et al. Cell therapy for spinal cord injury using induced pluripotent stem cells[J]. Regen Ther, 2019, 11: 75-80. doi: 10.1016/j.reth.2019.05.006
|
[44] |
JEONG S K, CHOI I, JEON S R. Current status and future strategies to treat spinal cord injury with adult stem cells[J]. J Korean Neurosurg Soc, 2020, 63(2): 153-162. doi: 10.3340/jkns.2019.0146
|