HU Wenting, MIAO Xiaye, YANG Bingyin, YE Bicheng. Construction and validation of prognostic risk model for patients with hepatocellular carcinoma based on bioinformatics analysis[J]. Journal of Clinical Medicine in Practice, 2022, 26(4): 119-126. DOI: 10.7619/jcmp.20213658
Citation: HU Wenting, MIAO Xiaye, YANG Bingyin, YE Bicheng. Construction and validation of prognostic risk model for patients with hepatocellular carcinoma based on bioinformatics analysis[J]. Journal of Clinical Medicine in Practice, 2022, 26(4): 119-126. DOI: 10.7619/jcmp.20213658

Construction and validation of prognostic risk model for patients with hepatocellular carcinoma based on bioinformatics analysis

More Information
  • Received Date: September 10, 2021
  • Available Online: March 21, 2022
  • Published Date: February 27, 2022
  •   Objective  To construct a prognostic risk model for clinical treatment of hepatocellular carcinoma (HCC) based on public databases.
      Methods  The mRNA expression data and clinical information of HCC and adjacent normal tissues were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Differentially expressed genes (DEGs) related to overall survival (OS) were screened in the TCGA cohort, 2 or 3 mRNAs were selected to form a combination, and Cox risk proportional regression model was constructed for all combinations. The optimal gene combination was determined by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and external validation based on ICGC cohort was carried out. The patients were divided into high-risk group and low-risk group according to the median risk score of TCGA cohort, gene set enrichment analysis (GSEA) was performed, and the relative half-inhibitory concentrations (IC50) of sorafenib, mitomycin, etoposide, adriamycin, paclitaxel and cisplatin in HCC patients were predicted by pRRophetic R software package.
      Results  For this prognostic risk model, the AUC of the ROC curve for predicting 1-, 3- and 5-year OS in the TCGA cohort were 0.786, 0.713 and 0.699, respectively, and the AUC of the ROC curve for predicting 1-, 3- and 4-year OS in the ICGC cohort were 0.719, 0.709 and 0.766, respectively. GSEA revealed that cell cycle related pathways were activated and bile acid metabolism was inhibited in the high-risk group. The IC50 of sorafenib in the low-risk group was significantly lower than that in the high-risk group, while the IC50 of cell cycle related chemotherapy drugs in the low-risk group was significantly higher than that in the high-risk group (P < 0.05).
      Conclusion  This study establishes and verifies the prognostic risk model for HCC, and provides a reference for the formulation of individualized diagnosis and treatment plan for HCC patients.
  • [1]
    VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462. doi: 10.1056/NEJMra1713263
    [2]
    YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. doi: 10.1038/s41575-019-0186-y
    [3]
    TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. doi: 10.3322/caac.21262
    [4]
    BROWN Z J, GRETEN T F, HEINRICH B. Adjuvant treatment of hepatocellular carcinoma: prospect of immunotherapy[J]. Hepatology, 2019, 70(4): 1437-1442. doi: 10.1002/hep.30633
    [5]
    HUANG W T, SKANDERUP A J, LEE C G. Advances in genomic hepatocellular carcinoma research[J]. Gigascience, 2018, 7(11): 1-22. http://www.onacademic.com/detail/journal_1000041617495499_6d02.html
    [6]
    DOMINGUEZ D A, WANG X W. Impact of next-generation sequencing on outcomes in hepatocellular carcinoma: how precise are we really[J]. J Hepatocell Carcinoma, 2020, 7: 33-37. doi: 10.2147/JHC.S217948
    [7]
    CARUSO S, O'BRIEN D R, CLEARY S P, et al. Genetics of hepatocellular carcinoma: approaches to explore molecular diversity[J]. Hepatology, 2021, 73(Suppl 1): 14-26. http://www.researchgate.net/publication/348322949_Genetics_of_Hepatocellular_Carcinoma_Approaches_to_Explore_Molecular_Diversity
    [8]
    GEELEHER P, COX N, HUANG R S. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels[J]. PLoS One, 2014, 9(9): e107468. doi: 10.1371/journal.pone.0107468
    [9]
    PAN Y S, CHEN H R, YU J. Biomarkers in hepatocellular carcinoma: current status and future perspectives[J]. Biomedicines, 2020, 8(12): 576. doi: 10.3390/biomedicines8120576
    [10]
    OURA K, MORISHITA A, MASAKI T. Molecular and functional roles of microRNAs in the progression of hepatocellular carcinoma-A review[J]. Int J Mol Sci, 2020, 21(21): 8362. doi: 10.3390/ijms21218362
    [11]
    KIM E, VIATOUR P. Hepatocellular carcinoma: old friends and new tricks[J]. Exp Mol Med, 2020, 52(12): 1898-1907. doi: 10.1038/s12276-020-00527-1
    [12]
    MUINAO T, DEKA BORUAH H P, PAL M. Multi-biomarker panel signature as the key to diagnosis of ovarian cancer[J]. Heliyon, 2019, 5(12): e02826. doi: 10.1016/j.heliyon.2019.e02826
    [13]
    FOUNTZILAS C, KAKLAMANI V G. Multi-gene panel testing in breast cancer management[J]. Cancer Treat Res, 2018, 173: 121-140.
    [14]
    YANG Z C, ZI Q, XU K, et al. Development of a macrophages-related 4-gene signature and nomogram for the overall survival prediction of hepatocellular carcinoma based on WGCNA and LASSO algorithm[J]. Int Immunopharmacol, 2021, 90: 107238. doi: 10.1016/j.intimp.2020.107238
    [15]
    LIU G M, XIE W X, ZHANG C Y, et al. Identification of a four-gene metabolic signature predicting overall survival for hepatocellular carcinoma[J]. J Cell Physiol, 2020, 235(2): 1624-1636. doi: 10.1002/jcp.29081
    [16]
    LIN P, HE R Q, DANG Y W, et al. An autophagy-related gene expression signature for survival prediction in multiple cohorts of hepatocellular carcinoma patients[J]. Oncotarget, 2018, 9(25): 17368-17395. doi: 10.18632/oncotarget.24089
    [17]
    LI G X, XU W Q, ZHANG L, et al. Development and validation of a CIMP-associated prognostic model for hepatocellular carcinoma[J]. EBioMedicine, 2019, 47: 128-141. doi: 10.1016/j.ebiom.2019.08.064
    [18]
    YU J, WU X L, LV M, et al. A model for predicting prognosis in patients with esophageal squamous cell carcinoma based on joint representation learning[J]. Oncol Lett, 2020, 20(6): 387. http://www.ncbi.nlm.nih.gov/pubmed/33193847
    [19]
    YANG Y J, WANG C Y, WEI N D, et al. Identification of prognostic chromatin-remodeling genes in clear cell renal cell carcinoma[J]. Aging (Albany NY), 2020, 12(24): 25614-25642.
    [20]
    HONG W F, LIANG L, GU Y J, et al. Immune-related lncRNA to construct novel signature and predict the immune landscape of human hepatocellular carcinoma[J]. Mol Ther Nucleic Acids, 2020, 22: 937-947. doi: 10.1016/j.omtn.2020.10.002
    [21]
    陈懿, 李雪, 林文雅, 等. 自噬基因预测肝癌患者长期生存及通路分析[J]. 医学研究杂志, 2021, 50(1): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYZ202101031.htm
    [22]
    段万里, 任伟, 邓骞, 等. 基于TCGA数据库的肾癌自噬相关基因预后模型的建立与应用[J]. 现代泌尿外科杂志, 2020, 25(10): 870-875, 889. doi: 10.3969/j.issn.1009-8291.2020.10.003
    [23]
    TABUSE M, OHTA S, OHASHI Y, et al. Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells[J]. Mol Cancer, 2011, 10: 60. doi: 10.1186/1476-4598-10-60
    [24]
    LONG J Y, ZHANG L, WAN X S, et al. A four-gene-based prognostic model predicts overall survival in patients with hepatocellular carcinoma[J]. J Cell Mol Med, 2018, 22(12): 5928-5938. doi: 10.1111/jcmm.13863
    [25]
    LV X P, LI L L, LV L, et al. HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2015, 34: 133. doi: 10.1186/s13046-015-0245-3
    [26]
    CHRISTIANSEN A, DYRSKJOT L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer[J]. Cancer Lett, 2013, 331(1): 18-23. doi: 10.1016/j.canlet.2012.12.013
    [27]
    GUO X G, WANG Z H, ZHANG J N, et al. Upregulated KPNA2 promotes hepatocellular carcinoma progression and indicates prognostic significance across human cancer types[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(3): 285-292. doi: 10.1093/abbs/gmz003
    [28]
    JIANG P, TANG Y Q, HE L, et al. Aberrant expression of nuclear KPNA2 is correlated with early recurrence and poor prognosis in patients with small hepatocellular carcinoma after hepatectomy[J]. Med Oncol, 2014, 31(8): 1-7.
    [29]
    KONIROVA J, OLTOVA J, CORLETT A, et al. Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions[J]. Sci Rep, 2017, 7: 41597. doi: 10.1038/srep41597
    [30]
    XIE G X, WANG X N, HUANG F J, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis[J]. Int J Cancer, 2016, 139(8): 1764-1775. doi: 10.1002/ijc.30219
    [31]
    CHEN W B, OU M L, TANG D E, et al. Identification and validation of immune-related gene prognostic signature for hepatocellular carcinoma[J]. J Immunol Res, 2020, 2020: 5494858. http://qikan.cqvip.com/Qikan/Article/Detail?id=7106408960
    [32]
    STACEY D, KAZLAUSKAS A. Regulation of Ras signaling by the cell cycle[J]. Curr Opin Genet Dev, 2002, 12(1): 44-46. doi: 10.1016/S0959-437X(01)00262-3
    [33]
    MATSUDA Y. Molecular mechanism underlying the functional loss of cyclindependent kinase inhibitors p16 and p27 in hepatocellular carcinoma[J]. World J Gastroenterol, 2008, 14(11): 1734-1740. doi: 10.3748/wjg.14.1734
    [34]
    MATSUDA Y, ICHIDA T. p16 and p27 are functionally correlated during the progress of hepatocarcinogenesis[J]. Med Mol Morphol, 2006, 39(4): 169-175. doi: 10.1007/s00795-006-0339-2
    [35]
    GREENBAUM L E. Cell cycle regulation and hepatocarcinogenesis[J]. Cancer Biol Ther, 2004, 3(12): 1200-1207. doi: 10.4161/cbt.3.12.1392
  • Related Articles

    [1]GONG Yujia, LI Hailong, CAO Hui. Mechanism of circ-001209 on retinal angiogenesis in rats with diabetic retinopathy by regulating interleukin-33/suppression of tumorigenicity 2 signaling pathway[J]. Journal of Clinical Medicine in Practice, 2025, 29(4): 23-18, 33. DOI: 10.7619/jcmp.20243144
    [2]BIAN Yun, BAI Hailong, MENG Xiaofeng, LIU Xiao, XUE Chao, LIU Ruixue, CHANG Hongkun, TIAN Fengsheng, CUI Ronggang, SU Yang, LIU mei. Analysis of network pharmacological mechanism of Zhenlian Mingmu Capsule in treatment of diabetic retinopathy[J]. Journal of Clinical Medicine in Practice, 2023, 27(18): 75-82. DOI: 10.7619/jcmp.20232153
    [3]ZUO Shufei, LIANG Shu, QIN Yilu, WU Jie, ZHANG Chao, GUO Zhanfei, BIAN Caiyue, FAN Wenqiang. Effect and mechanism of mircoRNA-6779-5p on chondrocyte injury induced by interleukin-1β[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 69-75, 79. DOI: 10.7619/jcmp.20231173
    [4]PANG Hanqing, SHANG Xiaoyu, WEI Ye, DING Shuwen, LIU Liang. Mechanism of Tongmai granules in treatment of stroke based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and network pharmacology[J]. Journal of Clinical Medicine in Practice, 2022, 26(24): 13-19. DOI: 10.7619/jcmp.20223482
    [5]WEI Yu, XU Xuefeng, TANG Xiaojun, LIANG Jun, FENG Xuebing, ZHAO Cheng. Role and mechanism of developmental endothelial locus-1 in collagen-induced arthritis[J]. Journal of Clinical Medicine in Practice, 2022, 26(17): 53-56. DOI: 10.7619/jcmp.20220543
    [6]LI Wenji, HU Fang, XU Wei. Mechanism of Chuanlong Anti-cancer Decoction in treatment of prostate cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 18-23. DOI: 10.7619/jcmp.20214121
    [7]JIN Xuening, LIN Fei, FENG Xinyi, LI Cen, CUI Shu′na. Mechanism of docetaxel in treatment of choriocarcinoma based on network pharmacology[J]. Journal of Clinical Medicine in Practice, 2022, 26(1): 18-21. DOI: 10.7619/jcmp.20213494
    [8]QIN Wei, YIN Zixin, HUA Weiwei, WANG Yujie, WANG Yang, DENG Jialin, CAI Zhaoying, QIAN Yayun. Mechanisms of Marsdenia tenacissima in inhibiting gastric cancer based on network pharmacologyand molecular docking technology[J]. Journal of Clinical Medicine in Practice, 2022, 26(1): 1-7,17. DOI: 10.7619/jcmp.20213297
    [9]SHEN Jing, HUANG Wenjun, NIU Lijian, MA Yongxiang, ZHANG Jing. Research on mechanism of exercise rehabilitation therapy in cardiovascular diseases[J]. Journal of Clinical Medicine in Practice, 2021, 25(15): 124-127. DOI: 10.7619/jcmp.20211454
    [10]WANG Lei, CHEN Kun. Analysis in mechanism of Taohong Siwu Decoction in the treatment of femoral head necrosis based on network pharmacology[J]. Journal of Clinical Medicine in Practice, 2021, 25(2): 10-15,19. DOI: 10.7619/jcmp.20200915
  • Cited by

    Periodical cited type(9)

    1. 张丹. 闭合性胫骨远端关节外骨折的内固定术联合抗凝药物对患者患肢功能影响. 江西医药. 2023(06): 690-692+703 .
    2. 王禹,李东光,王洪淼,刘剑,邢武军. 锁定加压钢板结合MIPPO技术治疗胫骨远端骨折的优良率及对愈合时间、负重时间、bFGF、BMP-2水平的影响. 中国医学创新. 2022(09): 139-144 .
    3. 林先禄. 切开复位内固定、MIPPO技术结合LCP钢板内固定治疗胫骨远端闭合性骨折的临床研究. 实用中西医结合临床. 2022(16): 103-106 .
    4. 景晨光,杨虎. MIPPO技术结合锁定加压钢板对A型闭合性胫骨远端骨折患者踝关节功能及活动范围的影响. 临床医学研究与实践. 2021(02): 81-83 .
    5. 陈松涛. MIPPO技术结合锁定加压钢板治疗胫骨远端骨折临床疗效分析. 微量元素与健康研究. 2021(02): 78-80 .
    6. 李涛. 两种内固定对AO分型43-A型胫骨骨折的治疗效果评价. 中国卫生标准管理. 2021(17): 52-55 .
    7. 郑义海,向明,汪爱兰,江有华,袁梦龙. 无X线透视下微创切口+内侧经皮锁定钢板治疗胫骨下段螺旋型骨折的临床效果. 医学信息. 2021(23): 69-72 .
    8. 万春根,殷伟根,奚伟伟. 外侧锁定加压钢板治疗闭合性胫骨下端骨折的效果. 医学信息. 2020(08): 133-134 .
    9. 高世龙. 经皮微创锁定加压钢板内固定术治疗胫骨远端骨折患者的有效性及安全性分析. 当代医学. 2020(20): 52-55 .

    Other cited types(1)

Catalog

    Article views (342) PDF downloads (39) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return