Citation: | SHAO Huijuan, ZHENG Xiaofeng, HUANG Jun, MA Xuefeng, YU Xiaohui, ZHANG Jiucong. Research progress on roles of bile acids and its receptors in pathogenesis of non-alcoholic fatty liver disease and pharmacological treatment[J]. Journal of Clinical Medicine in Practice, 2023, 27(9): 143-148. DOI: 10.7619/jcmp.20230573 |
Non-alcoholic fatty liver disease (NAFLD) is a liver metabolic disorder characterized by lipid accumulation in liver cells, and it has become the main cause of chronic liver disease worldwide. 20% to 30% of patients with NAFLD were able to progress to non-alcoholic steatohepatitis (NASH), and the development of NASH is closely related to various metabolic disorders. Bile acids and its receptor function play important roles in the pathogenesis of NASH, and bile acid receptors are the important targets for the treatment of NASH. This article reviewed the roles of bile acids and their receptors in the development of NAFLD and NASH, especially the functional research of farnesol X receptors (FXR) in different tissues (including liver and intestine), and introduced the research progress of NASH therapeutic drugs based on bile acids and their receptors.
[1] |
PAIK J M, GOLABI P, YOUNOSSI Y, et al. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD[J]. Hepatology, 2020, 72(5): 1605-1616. doi: 10.1002/hep.31173
|
[2] |
YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. doi: 10.1002/hep.30251
|
[3] |
GEIER A, TINIAKOS D, DENK H, et al. From the origin of NASH to the future of metabolic fatty liver disease[J]. Gut, 2021, 70(8): 1570-1579. doi: 10.1136/gutjnl-2020-323202
|
[4] |
FIORUCCI S, BIAGIOLI M, SEPE V, et al. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH)[J]. Expert Opin Investig Drugs, 2020, 29(6): 623-632. doi: 10.1080/13543784.2020.1763302
|
[5] |
RAU M, GEIER A. An update on drug development for the treatment of nonalcoholic fatty liver disease-from ongoing clinical trials to future therapy[J]. Expert Rev Clin Pharmacol, 2021, 14(3): 333-340. doi: 10.1080/17512433.2021.1884068
|
[6] |
RIDLON J M, HARRIS S C, BHOWMIK S, et al. Consequences of bile salt biotransformations by intestinal bacteria[J]. Gut Microbes, 2016, 7(1): 22-39. doi: 10.1080/19490976.2015.1127483
|
[7] |
HONDA A, MIYAZAKI T, IWAMOTO J, et al. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition[J]. J Lipid Res, 2020, 61(1): 54-69. doi: 10.1194/jlr.RA119000395
|
[8] |
CHÁVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694. e3. doi: 10.1053/j.gastro.2017.01.055
|
[9] |
DIEHL A M, DAY C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis[J]. N Engl J Med, 2017, 377(21): 2063-2072. doi: 10.1056/NEJMra1503519
|
[10] |
NIMER N, CHOUCAIR I, WANG Z N, et al. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression[J]. Metabolism, 2021, 116: 154457. doi: 10.1016/j.metabol.2020.154457
|
[11] |
FERSLEW B C, XIE G X, JOHNSTON C K, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis[J]. Dig Dis Sci, 2015, 60(11): 3318-3328. doi: 10.1007/s10620-015-3776-8
|
[12] |
XIE G X, JIANG R Q, WANG X N, et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis[J]. EBioMedicine, 2021, 66: 103290. doi: 10.1016/j.ebiom.2021.103290
|
[13] |
CAUSSY C, HSU C, SINGH S, et al. Serum bile acid patterns are associated with the presence of NAFLD in twins, and dose-dependent changes with increase in fibrosis stage in patients with biopsy-proven NAFLD[J]. Aliment Pharmacol Ther, 2019, 49(2): 183-193. doi: 10.1111/apt.15035
|
[14] |
GRZYCH G, CHÁVEZ-TALAVERA O, DESCAT A, et al. NASH-related increases in plasma bile acid levels depend on insulin resistance[J]. JHEP Rep, 2021, 3(2): 100222. doi: 10.1016/j.jhepr.2020.100222
|
[15] |
LEW J L, ZHAO A N, YU J H, et al. The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion[J]. J Biol Chem, 2004, 279(10): 8856-8861. doi: 10.1074/jbc.M306422200
|
[16] |
HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10(1): 4971. doi: 10.1038/s41467-019-12896-x
|
[17] |
JIAO N, BAKER S S, CHAPA-RODRIGUEZ A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut, 2018, 67(10): 1881-1891. doi: 10.1136/gutjnl-2017-314307
|
[18] |
VENETSANAKI V, KARABOUTA Z, POLYZOS S A. Farnesoid X nuclear receptor agonists for the treatment of nonalcoholic steatohepatitis[J]. Eur J Pharmacol, 2019, 863: 172661. doi: 10.1016/j.ejphar.2019.172661
|
[19] |
DENG W Y, FAN W J, TANG T T, et al. Farnesoid X receptor deficiency induces hepatic lipid and glucose metabolism disorder via regulation of pyruvate dehydrogenase kinase 4[J]. Oxid Med Cell Longev, 2022, 2022: 3589525.
|
[20] |
SEOK S, SUN H, KIM Y C, et al. Defective FXR-SHP regulation in obesity aberrantly increases miR-802 expression, promoting insulin resistance and fatty liver[J]. Diabetes, 2021, 70(3): 733-744. doi: 10.2337/db20-0856
|
[21] |
SCHUMACHER J D, GUO G L. Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis[M]. Bile Acids and Their Receptors. Cham: Springer International Publishing, 2019: 325-357.
|
[22] |
KIM D H, XIAO Z, KWON S, et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity[J]. EMBO J, 2015, 34(2): 184-199. doi: 10.15252/embj.201489527
|
[23] |
VERBEKE L, MANNAERTS I, SCHIERWAGEN R, et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis[J]. Sci Rep, 2016, 6: 33453. doi: 10.1038/srep33453
|
[24] |
GAI Z B, VISENTIN M, GUI T, et al. Effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-κB signaling, and hepatic inflammation[J]. Mol Pharmacol, 2018, 94(2): 802-811. doi: 10.1124/mol.117.111047
|
[25] |
HAO H P, CAO L J, JIANG C T, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated Sepsis[J]. Cell Metab, 2017, 25(4): 856-867. doi: 10.1016/j.cmet.2017.03.007
|
[26] |
ADRIANA C. Disruption of TFGβ-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand[J]. Pharmacol Res, 2018, 131: 17-31. doi: 10.1016/j.phrs.2018.02.033
|
[27] |
TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. doi: 10.1038/nrgastro.2017.38
|
[28] |
WANG H, GE C L, ZHOU J Y, et al. Noncanonical farnesoid X receptor signaling inhibits apoptosis and impedes liver fibrosis[J]. EBioMedicine, 2018, 37: 322-333. doi: 10.1016/j.ebiom.2018.10.028
|
[29] |
GAI Z B, GUI T, ALECU I, et al. Farnesoid X receptor activation induces the degradation of hepatotoxic 1-deoxysphingolipids in non-alcoholic fatty liver disease[J]. Liver Int, 2020, 40(4): 844-859. doi: 10.1111/liv.14340
|
[30] |
NISSAR A U, SHARMA L, MUDASIR M A, et al. Chemical chaperone 4-phenyl butyric acid (4-PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy[J]. J Lipid Res, 2017, 58(9): 1855-1868. doi: 10.1194/jlr.M077537
|
[31] |
WU K, ZHAO T, HOGSTRAND C, et al. FXR-mediated inhibition of autophagy contributes to FA-induced TG accumulation and accordingly reduces FA-induced lipotoxicity[J]. Cell Commun Signal, 2020, 18(1): 47. doi: 10.1186/s12964-020-0525-1
|
[32] |
SEOK S, FU T, CHOI S E, et al. Transcriptional regulation of autophagy by an FXR-CREB axis[J]. Nature, 2014, 516(7529): 108-111. doi: 10.1038/nature13949
|
[33] |
LEE J M, WAGNER M, XIAO R, et al. Nutrient-sensing nuclear receptors coordinate autophagy[J]. Nature, 2014, 516(7529): 112-115. doi: 10.1038/nature13961
|
[34] |
MONTAIGNE D, BUTRUILLE L, STAELS B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol, 2021, 18(12): 809-823. doi: 10.1038/s41569-021-00569-6
|
[35] |
BROCKER C N, KIM D, MELIA, et al. Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting[J]. Nat Commun, 2020, 11(1): 5847. doi: 10.1038/s41467-020-19554-7
|
[36] |
STEC D E, GORDON D M, HIPP J A, et al. Loss of hepatic PPARα promotes inflammation and serum hyperlipidemia in diet-induced obesity[J]. Am J Physiol Regul Integr Comp Physiol, 2019, 317(5): R733-R745. doi: 10.1152/ajpregu.00153.2019
|
[37] |
YU D D, VAN CITTERS G, LI H Z, et al. Discovery of novel modulators for the PPARα (peroxisome proliferator activated receptor α): potential therapies for nonalcoholic fatty liver disease[J]. Bioorg Med Chem, 2021, 41: 116193. doi: 10.1016/j.bmc.2021.116193
|
[38] |
SASAKI Y, ASAHIYAMA M, TANAKA T, et al. Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content[J]. Sci Rep, 2020, 10(1): 7818. doi: 10.1038/s41598-020-64902-8
|
[39] |
ZHANG Z H, CHEN F F, LI J H, et al. 1, 25(OH)2D3 suppresses proinflammatory responses by inhibiting Th1 cell differentiation and cytokine production through the JAK/STAT pathway[J]. Am J Transl Res, 2018, 10(8): 2737-2746.
|
[40] |
ZHANG H, SHEN Z, LIN Y M, et al. Vitamin D receptor targets hepatocyte nuclear factor 4α and mediates protective effects of vitamin D in nonalcoholic fatty liver disease[J]. J Biol Chem, 2020, 295(12): 3891-3905. doi: 10.1074/jbc.RA119.011487
|
[41] |
BOZIC M, GUZMÁN C, BENET M, et al. Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis[J]. J Hepatol, 2016, 65(4): 748-757. doi: 10.1016/j.jhep.2016.05.031
|
[42] |
CAO Y, SHU X B, YAO Z M, et al. Is vitamin D receptor a druggable target for non-alcoholic steatohepatitis?[J]. World J Gastroenterol, 2020, 26(38): 5812-5821. doi: 10.3748/wjg.v26.i38.5812
|
[43] |
SHI Y, SU W T, ZHANG L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation[J]. Front Immunol, 2020, 11: 609060.
|
[44] |
BIDAULT-JOURDAINNE V, MERLEN G, GLÉNISSON M, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload[J]. JHEP Rep, 2021, 3(2): 100214. doi: 10.1016/j.jhepr.2020.100214
|
[45] |
FERRELL J M, PATHAK P, BOEHME S, et al. Deficiency of both farnesoid X receptor and takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice[J]. Hepatology, 2019, 70(3): 955-970. doi: 10.1002/hep.30513
|
[46] |
XIE G X, JIANG R Q, WANG X N, et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis[J]. EBioMedicine, 2021, 66: 103290. doi: 10.1016/j.ebiom.2021.103290
|
[47] |
NEUSCHWANDER-TETRI B A, LOOMBA R, SANYAL A J, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial[J]. Lancet, 2015, 385(9972): 956-965. doi: 10.1016/S0140-6736(14)61933-4
|
[48] |
RATZIU V, SANYAL A J, LOOMBA R, et al. REGENERATE: Design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis[J]. Contemp Clin Trials, 2019, 84: 105803. doi: 10.1016/j.cct.2019.06.017
|
[49] |
YOUNOSSI Z M, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394(10215): 2184-2196. doi: 10.1016/S0140-6736(19)33041-7
|
[50] |
LI J X, LIU C H, ZHOU Z Y, et al. Isotschimgine alleviates nonalcoholic steatohepatitis and fibrosis via FXR agonism in mice[J]. Phytother Res, 2021, 35(6): 3351-3364. doi: 10.1002/ptr.7055
|
[51] |
PATEL K, HARRISON S A, ELKHASHAB M, et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial[J]. Hepatology, 2020, 72(1): 58-71. doi: 10.1002/hep.31205
|
[52] |
GONZALEZ F J, JIANG C T, XIE C, et al. Intestinal farnesoid X receptor signaling modulates metabolic disease[J]. Dig Dis, 2017, 35(3): 178-184. doi: 10.1159/000450908
|
[53] |
SUN L L, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24(12): 1919-1929. doi: 10.1038/s41591-018-0222-4
|
[54] |
YANG F, HUANG X F, YI T S, et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor[J]. Cancer Res, 2007, 67(3): 863-867. doi: 10.1158/0008-5472.CAN-06-1078
|
[55] |
HU Y B, LIU X Y, ZHAN W. Farnesoid X receptor agonist INT-767 attenuates liver steatosis and inflammation in rat model of nonalcoholic steatohepatitis[J]. Drug Des Dev Ther, 2018, 12: 2213-2221. doi: 10.2147/DDDT.S170518
|
[56] |
WANG X X, XIE C, LIBBY A E, et al. The role of FXR and TGR5 in reversing and preventing progression of Western diet-induced hepatic steatosis, inflammation, and fibrosis in mice[J]. J Biol Chem, 2022, 298(11): 102530. doi: 10.1016/j.jbc.2022.102530
|
[57] |
HARRISON S A, ROSSI S J, PAREDES A H, et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis[J]. Hepatology, 2020, 71(4): 1198-1212. doi: 10.1002/hep.30590
|
[58] |
HARRISON S A, NEFF G, GUY C D, et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis[J]. Gastroenterology, 2021, 160(1): 219-231. doi: 10.1053/j.gastro.2020.08.004
|
[59] |
LI Q, LI M, LI F H, et al. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice[J]. J Ethnopharmacol, 2020, 258: 112896. doi: 10.1016/j.jep.2020.112896
|
[60] |
HUANG P, YANG L L, LIU Y, et al. Lanzhang Granules ameliorate nonalcoholic fatty liver disease by regulating the PPARα signaling pathway[J]. Evid Based Complement Alternat Med, 2022, 2022: 1124901.
|
[61] |
HUANG Y J, LANG H D, CHEN K, et al. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway[J]. Physiol Appliquee Nutr Metab, 2020, 45(3): 227-239. doi: 10.1139/apnm-2019-0057
|
[62] |
DU T Y, FANG Q, ZHANG Z H, et al. Lentinan protects against nonalcoholic fatty liver disease by reducing oxidative stress and apoptosis via the PPARα pathway[J]. Metabolites, 2022, 12(1): 55. doi: 10.3390/metabo12010055
|
[63] |
CUI S, PAN X J, GE C L, et al. Silybin alleviates hepatic lipid accumulation in methionine-choline deficient diet-induced nonalcoholic fatty liver disease in mice via peroxisome proliferator-activated receptor Α[J]. Chin J Nat Med, 2021, 19(6): 401-411.
|