LIU Xilong, RONG Qian, XING Yue, PAN Biqiong, LU Dan. Research progress on relationship between interleukin-1 family and preeclampsia[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 107-111. DOI: 10.7619/jcmp.20214492
Citation: LIU Xilong, RONG Qian, XING Yue, PAN Biqiong, LU Dan. Research progress on relationship between interleukin-1 family and preeclampsia[J]. Journal of Clinical Medicine in Practice, 2022, 26(9): 107-111. DOI: 10.7619/jcmp.20214492

Research progress on relationship between interleukin-1 family and preeclampsia

More Information
  • Received Date: November 14, 2021
  • Available Online: May 09, 2022
  • Published Date: May 14, 2022
  • Interleukin (IL)-1 family cytokines can be expressed in many tissues and cells and participate in the occurrence and development of many diseases through multiple signaling pathways, and their main functions are to regulate the growth, differentiation and activation of immune cells in the inflammatory or immune response as well as participate in many physiological and pathological responses of the body. IL-1 family has 11 members, most of which are proinflammatory cytokines. These cytokines play important roles in immune regulation and inflammatory process by stimulating the expression of genes related to inflammation and autoimmune diseases. In recent years, more and more studies have reported the role of IL-1 family members in preeclampsia. This study reviewed the research progress of IL-1 family cytokines in preeclampsia, in order to provide new ideas for the diagnosis and treatment of preeclampsia.
  • [1]
    RAGUEMA N, GANNOUN M B A, ZITOUNI H, et al. Interleukin-10 rs1800871 (-819C/T) and ATA haplotype are associated with preeclampsia in a Tunisian population[J]. Pregnancy Hypertens, 2018, 11: 105-110. doi: 10.1016/j.preghy.2018.01.011
    [2]
    SAITO S, TAKAGI K, MORIYA J, et al. A randomized phase 3 trial evaluating antithrombin gamma treatment in Japanese patients with early-onset severe preeclampsia (KOUNO-TORI study): study protocol[J]. Contemp Clin Trials, 2021, 107: 106490. doi: 10.1016/j.cct.2021.106490
    [3]
    CHEN Y C, LAI Y J, SU Y T, et al. Higher gestational weight gain and lower serum estradiol levels are associated with increased risk of preeclampsia after in vitro fertilization[J]. Pregnancy Hypertens, 2020, 22: 126-131. doi: 10.1016/j.preghy.2020.08.002
    [4]
    BEHRAM M, OĜLAK S C, DOĜAN Y. Evaluation of BRD4 levels in patients with early-onset preeclampsia[J]. J Gynecol Obstet Hum Reprod, 2021, 50(2): 101963. doi: 10.1016/j.jogoh.2020.101963
    [5]
    NADERI M, YAGHOOTKAR H, TARA F, et al. Tumor necrosis factor-alpha polymorphism at position-238 in preeclampsia[J]. Iran Red Crescent Med J, 2014, 16(1): e11195.
    [6]
    ALANBAY I, COKSUER H, ERCAN C M, et al. Chitotriosidase, interleukin-1 beta and tumor necrosis factor alpha levels in mild preeclampsia[J]. Arch Gynecol Obstet, 2012, 285(6): 1505-1511. doi: 10.1007/s00404-011-2157-6
    [7]
    MULLA M J, MYRTOLLI K, POTTER J, et al. Uric acid induces trophoblast IL-1β production via the inflammasome: implications for the pathogenesis of preeclampsia[J]. Am J Reproductive Immunol, 2011, 65(6): 542-548. doi: 10.1111/j.1600-0897.2010.00960.x
    [8]
    CAIRNS R A, HARRIS I S, MAK T W. Regulation of cancer cell metabolism[J]. Nat Rev Cancer, 2011, 11(2): 85-95. doi: 10.1038/nrc2981
    [9]
    GHASEMI M, KASHANI E, FAYYAZ A, et al. Interleukin-1 alpha variation is associated with the risk of developing preeclampsia[J]. Eur J Obstet Gynecol Reprod Biol, 2015, 193: 75-78. doi: 10.1016/j.ejogrb.2015.06.020
    [10]
    ZHU Z W, PARIKH P, ZHAO H Y, et al. Targeting immunometabolism of neoplasms by interleukins: a promising immunotherapeutic strategy for cancer treatment[J]. Cancer Lett, 2021, 518: 94-101. doi: 10.1016/j.canlet.2021.06.013
    [11]
    KIMYA Y, AKDIŞ C, CENGIZ C, et al. Plasma interleukin-1alpha, interleukin-1beta and interleukin-1 receptor antagonist levels in pre-eclampsia[J]. Eur J Obstet Gynecol Reprod Biol, 1997, 73(1): 17-21. doi: 10.1016/S0301-2115(97)02698-5
    [12]
    LÖB S, AMANN N, KUHN C, et al. Interleukin-1 beta is significantly upregulated in the decidua of spontaneous and recurrent miscarriage placentas[J]. J Reprod Immunol, 2021, 144: 103283. doi: 10.1016/j.jri.2021.103283
    [13]
    KARMAKAR S, DAS C. Regulation of trophoblast invasion by IL-1beta and TGF-beta1[J]. Am J Reprod Immunol, 2002, 48(4): 210-219. doi: 10.1034/j.1600-0897.2002.01151.x
    [14]
    LIBRACH C L, FEIGENBAUM S L, BASS K E, et al. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro[J]. J Biol Chem, 1994, 269(25): 17125-17131. doi: 10.1016/S0021-9258(17)32529-2
    [15]
    TAUBER Z, CHROMA K, BARANOVA R, et al. The expression patterns of IL-1β and IL-10 and their relation to CYP epoxygenases in normal human placenta[J]. Ann Anat Anat Anzeiger, 2021, 236: 151671. doi: 10.1016/j.aanat.2020.151671
    [16]
    KRVSSEL J S, BIELFELD P, POLAN M L, et al. Regulation of embryonic implantation[J]. Eur J Obstet Gynecol Reprod Biol, 2003, 110(Suppl 1): S2-S9.
    [17]
    WHITMAN S C, RAVISANKAR P, DAUGHERTY A. Interleukin-18 enhances atherosclerosis in apolipoprotein E (-/-) mice through release of interferon-gamma[J]. Circ Res, 2002, 90(2): E34-E38.
    [18]
    LASKOWSKA M, LASKOWSKA K, OLESZCZUK J. Interleukin-18 concentrations in pregnancies complicated by preeclampsia with and without IUGR: a comparison with normotensive pregnant women with isolated IUGR and healthy pregnant women[J]. Pregnancy Hypertens, 2011, 1(3/4): 206-212.
    [19]
    HUANG X D, HUANG H F, DONG M Y, et al. Serum and placental interleukin-18 are elevated in preeclampsia[J]. J Reprod Immunol, 2005, 65(1): 77-87. doi: 10.1016/j.jri.2004.09.003
    [20]
    于松, 臧春逸. 正常妊娠及子痫前期患者外周血中白介素-12、白介素-18的检测意义[J]. 北京医学, 2008, 30(1): 29-31. doi: 10.3969/j.issn.0253-9713.2008.01.009
    [21]
    SEOL H J, LEE E S, JUNG S E, et al. Serum levels of YKL-40 and interleukin-18 and their relationship to disease severity in patients with preeclampsia[J]. J Reprod Immunol, 2009, 79(2): 183-187. doi: 10.1016/j.jri.2008.10.003
    [22]
    陆凯丽, 张国英. 白细胞介素33在妊娠相关疾病中的研究进展[J]. 南京医科大学学报: 自然科学版, 2019, 39(7): 1076-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK201907029.htm
    [23]
    MOUSSION C, ORTEGA N, GIRARD J P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'[J]. PLoS One, 2008, 3(10): e3331.
    [24]
    石书明, 徐昉, 张华. 自噬调节白介素-33的表达与子痫前期发病机制的关系[J]. 重庆医科大学学报, 2016, 41(7): 663-668. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYK201607003.htm
    [25]
    MARTIN N T, MARTIN M U. Interleukin 33 is a guardian of barriers and a local alarmin[J]. Nat Immunol, 2016, 17(2): 122-131. doi: 10.1038/ni.3370
    [26]
    BERTHELOOT D, LATZ E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins[J]. Cell Mol Immunol, 2017, 14(1): 43-64. doi: 10.1038/cmi.2016.34
    [27]
    MATTA B M, REICHENBACH D K, ZHANG X L, et al. Peri-alloHCT IL-33 administration expands recipient T-regulatory cells that protect mice against acute GVHD[J]. Blood, 2016, 128(3): 427-439. doi: 10.1182/blood-2015-12-684142
    [28]
    GRANNE I, SOUTHCOMBE J H, SNIDER J V, et al. ST2 and IL-33 in pregnancy and pre-eclampsia[J]. PLoS One, 2011, 6(9): e24463. doi: 10.1371/journal.pone.0024463
    [29]
    王东东. 血清IL-33在子痫前期患者中的表达及临床意义[J]. 实验与检验医学, 2020, 38(4): 717-718, 724. doi: 10.3969/j.issn.1674-1129.2020.04.034
    [30]
    YU J X, QIAN L, WU F H, et al. Decreased frequency of peripheral blood CD8+CD25+FoxP3+ regulatory T cells correlates with IL-33 levels in pre-eclampsia[J]. Hypertens Pregnancy, 2017, 36(2): 217-225. doi: 10.1080/10641955.2017.1302470
    [31]
    DING L P, WANG X H, HONG X P, et al. IL-36 cytokines in autoimmunity and inflammatory disease[J]. Oncotarget, 2017, 9(2): 2895-2901.
    [32]
    MAGNE D, PALMER G, BARTON J L, et al. The new IL-1 family member IL-1F8 stimulates production of inflammatory mediators by synovial fibroblasts and articular chondrocytes[J]. Arthritis Res Ther, 2006, 8(3): R80. doi: 10.1186/ar1946
    [33]
    GE Y, HUANG M, DONG N, et al. Effect of interleukin-36β on activating autophagy of CD4+CD25+ regulatory T cells and its immune regulation in Sepsis[J]. J Infect Dis, 2020, 222(9): 1517-1530. doi: 10.1093/infdis/jiaa258
    [34]
    HARUSATO A, ABO H, NGO V L, et al. IL-36γ signaling controls the induced regulatory T cell-Th9 cell balance via NFκB activation and STAT transcription factors[J]. Mucosal Immunol, 2017, 10(6): 1455-1467. doi: 10.1038/mi.2017.21
    [35]
    SCHEIERMANN P, BACHMANN M, HÄRDLE L, et al. Application of IL-36 receptor antagonist weakens CCL20 expression and impairs recovery in the late phase of murine acetaminophen-induced liver injury[J]. Sci Rep, 2015, 5: 8521. doi: 10.1038/srep08521
    [36]
    VAN DE VEERDONK F L, STOECKMAN A K, WU G P, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist[J]. Proc Natl Acad Sci USA, 2012, 109(8): 3001-3005. doi: 10.1073/pnas.1121534109
    [37]
    CHUSTZ R T, NAGARKAR D R, POPOSKI J A, et al. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells[J]. Am J Respir Cell Mol Biol, 2011, 45(1): 145-153. doi: 10.1165/rcmb.2010-0075OC
    [38]
    CARRIER Y, MA H L, RAMON H E, et al. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis[J]. J Invest Dermatol, 2011, 131(12): 2428-2437. doi: 10.1038/jid.2011.234
    [39]
    KURŞUNLU S F, ÖZTVRK V Ö, HAN B, et al. Gingival crevicular fluid interleukin-36β (-1F8), interleukin-36γ (-1F9) and interleukin-33 (-1F11) levels in different periodontal disease[J]. Arch Oral Biol, 2015, 60(1): 77-83. doi: 10.1016/j.archoralbio.2014.08.021
    [40]
    SOUTHCOMBE J H, REDMAN C W G, SARGENT I L, et al. Interleukin-1 family cytokines and their regulatory proteins in normal pregnancy and pre-eclampsia[J]. Clin Exp Immunol, 2015, 181(3): 480-490. doi: 10.1111/cei.12608
    [41]
    SMITH D E, RENSHAW B R, KETCHEM R R, et al. Four new members expand the interleukin-1 superfamily[J]. J Biol Chem, 2000, 275(2): 1169-1175. doi: 10.1074/jbc.275.2.1169
    [42]
    SHARMA S, KULK N, NOLD M F, et al. The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines[J]. J Immunol, 2008, 180(8): 5477-5482. doi: 10.4049/jimmunol.180.8.5477
    [43]
    NOLD M F, NOLD-PETRY C A, ZEPP J A, et al. IL-37 is a fundamental inhibitor of innate immunity[J]. Nat Immunol, 2010, 11(11): 1014-1022. doi: 10.1038/ni.1944
    [44]
    SATIROGLU O, GVRLEK B, DURAKOGLUGIL M E, et al. The role of serum interleukin-37 levels, inflammation and blood pressure in patients with preeclampsia[J]. Clin Exp Hypertens, 2020, 42(7): 669-674. doi: 10.1080/10641963.2020.1772813
    [45]
    XIA H S, LIU Y, FU Y, et al. Biology of interleukin-38 and its role in chronic inflammatory diseases[J]. Int Immunopharmacol, 2021, 95: 107528. doi: 10.1016/j.intimp.2021.107528
    [46]
    MORA J, SCHLEMMER A, WITTIG I, et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses[J]. J Mol Cell Biol, 2016, 8(5): 426-438. doi: 10.1093/jmcb/mjw006
    [47]
    VAN DE VEERDONK F L, STOECKMAN A K, WU G P, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist[J]. Proc Natl Acad Sci USA, 2012, 109(8): 3001-3005. doi: 10.1073/pnas.1121534109
  • Related Articles

    [1]LI Ruibiao, REN Chengbo, WANG Cong, LI Yaru. Comparison of the efficacy of dosimetric parameters defined by different lung volume methods in predicting radiation pneumonitis in patients with non-small cell lung cancer[J]. Journal of Clinical Medicine in Practice, 2022, 26(19): 5-8, 13. DOI: 10.7619/jcmp.20221246
    [2]ZHOU Hui, SHAN Shucan. Dosimetry and passing rate of forward-intensity modulated radiation therapy and intensity modulated radiation therapy for left breast cancer patients with breast conserving surgery[J]. Journal of Clinical Medicine in Practice, 2021, 25(1): 15-18. DOI: 10.7619/jcmp.20200319
    [3]PAN Xiang, YANG Yi, HOU Yu, YUAN Meifang. Dosimetric differences of different radiation modes based on Monaco in postoperative intensity modulated radiotherapy of patients with left breast-conserving surgery for breast cancer[J]. Journal of Clinical Medicine in Practice, 2021, 25(1): 1-5. DOI: 10.7619/jcmp.20200621
    [4]YUAN Meifang, ZHAO Biao, YANG Yi, TANG Kewei, AN Yijun. Static intensity-modulated radiotherapy versus volumetric modulated arc therapy in dosimetric parameters of target area and organs at risk for middle thoracic esophageal cancer[J]. Journal of Clinical Medicine in Practice, 2020, 24(15): 21-24. DOI: 10.7619/jcmp.202015006
    [5]PAN Xiang, LI Ya, ZHU Sijin, YANG Yi. Dosimetry difference between field-in-field intensity modulated radiation therapy and fixed field inversely optimized intensity modulated radiation therapy in whole brain radiotherapy[J]. Journal of Clinical Medicine in Practice, 2019, 23(19): 12-16. DOI: 10.7619/jcmp.201919003
    [6]LU Yuting, WANG Jian, LIN Tao, SUI Jianfeng, YU Jingping, NI Xinye, SUN Suping. Dosimetry comparison between two different supraclavicular areas irradiation schedules for post-operation breast cancer and its influence on life quality[J]. Journal of Clinical Medicine in Practice, 2016, (19): 34-36. DOI: 10.7619/jcmp.201619010
    [7]LIU Wanjun, ZHANG Xizhi, LI Jun, HUA Wei, ZHANG Xianwen, CHEN Xuemei. Effects of dose calculation algorithm on dosiology of breast cancer patients with intensity modulated radiation therapy[J]. Journal of Clinical Medicine in Practice, 2016, (15): 28-32. DOI: 10.7619/jcmp.201615008
    [8]SONG Chengxia, WANG Jing. Dosimetric study of volumetric modulated arc therapy and intensity modulated radiation therapy in postoperative radiotherapy of cervical carcinoma[J]. Journal of Clinical Medicine in Practice, 2015, (23): 75-77,81. DOI: 10.7619/jcmp.201523023
    [9]LI Jinkai, CAO Yuandong, LI Caihong, WANG Peipei, SUN Xinchen. Application of volumetric modulated radiation therapy in the radiotherapy of patients with left breast cancer after breast-conserving surgery[J]. Journal of Clinical Medicine in Practice, 2015, (21): 59-62. DOI: 10.7619/jcmp.201521016
    [10]LI Danming, WANG Li, SUN Xinchen, MU Qingxia, PEI Zhongling. Dosimetric comparison between two volumetric modulated photon arc therapies for patients with breast cancer mastecomy[J]. Journal of Clinical Medicine in Practice, 2014, (16): 70-74. DOI: 10.7619/jcmp.201416020
  • Cited by

    Periodical cited type(2)

    1. 黄梦钰,王雅梅. 非编码RNA在口腔鳞状细胞癌耐药机制中的研究进展. 医学研究杂志. 2024(05): 22-26 .
    2. 王军成,兰彦平,赵岳阳,蒯涛,马东明,李敏. LINK-A RNAi慢病毒载体构建及其抑制U251胶质瘤细胞增殖的研究. 宁夏医学杂志. 2023(07): 577-580+572 .

    Other cited types(0)

Catalog

    Article views (287) PDF downloads (17) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return