GONG Xuechun, WU Zhifeng. Progression of cellular mechanism of proliferative vitreoretinal and its animal model[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 139-143. DOI: 10.7619/jcmp.20214495
Citation: GONG Xuechun, WU Zhifeng. Progression of cellular mechanism of proliferative vitreoretinal and its animal model[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 139-143. DOI: 10.7619/jcmp.20214495

Progression of cellular mechanism of proliferative vitreoretinal and its animal model

More Information
  • Received Date: November 15, 2021
  • Available Online: April 14, 2022
  • Published Date: April 14, 2022
  • Proliferative vitreoretinal (PVR) is a serious complication of rhegmatogenous retinal detachment (RRD) and its postoperative development. The mechanism of PVR has not been fully elucidated, which mainly involves the activation and excessive proliferation of various retinal cells. At present, the treatment method of PVR is single, and surgery is the main treatment for PVR. However, surgery cannot prevent and stop excessive cell proliferation in the eyes, so it is urgent to explore different treatment methods. In this paper, the mechanism of action of different retinal cells in the process of PVR and the progress of its animal models were summarized, in order to provide a basis for exploring different therapeutic methods.
  • [1]
    MACHEMER R, AABERG T M, FREEMAN H M, et al. An updated classification of retinal detachment with proliferative vitreoretinopathy[J]. Am J Ophthalmol, 1991, 112(2): 159-165. doi: 10.1016/S0002-9394(14)76695-4
    [2]
    ADELMAN R A, PARNES A J, MICHALEWSKA Z, et al. Clinical variables associated with failure of retinal detachment repair: the European vitreo-retinal society retinal detachment study report number 4[J]. Ophthalmology, 2014, 121(9): 1715-1719. doi: 10.1016/j.ophtha.2014.03.012
    [3]
    PATEL N N, BUNCE C, ASARIA R H, et al. Resources involved in managing retinal detachment complicated by proliferative vitreoretinopathy[J]. Retina, 2004, 24(6): 883-887. doi: 10.1097/00006982-200412000-00007
    [4]
    GARWEG J G, TAPPEINER C, HALBERSTADT M. Pathophysiology of proliferative vitreoretinopathy in retinal detachment[J]. Surv Ophthalmol, 2013, 58(4): 321-329. doi: 10.1016/j.survophthal.2012.12.004
    [5]
    CHEN X Y, YANG W M, DENG X Q, et al. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway[J]. Mol Vis, 2020, 26: 517-529.
    [6]
    TAMIYA S, LIU L, KAPLAN H J. Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact[J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2755-2763. doi: 10.1167/iovs.09-4725
    [7]
    TAMIYA S, KAPLAN H J. Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy[J]. Exp Eye Res, 2016, 142: 26-31. doi: 10.1016/j.exer.2015.02.008
    [8]
    LYU Y L, XU W, ZHANG J P, et al. Protein kinase A inhibitor H89 attenuates experimental proliferative vitreoretinopathy[J]. Invest Ophthalmol Vis Sci, 2020, 61(2): 1. doi: 10.1167/iovs.61.2.1
    [9]
    MA X Q, LONG C D, WANG F Y, et al. METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via Wnt/β-catenin pathway[J]. J Cell Mol Med, 2021, 25(9): 4220-4234. doi: 10.1111/jcmm.16476
    [10]
    CUI L, LYU Y L, JIN X L, et al. miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1[J]. Ann Transl Med, 2019, 7(23): 751. doi: 10.21037/atm.2019.11.90
    [11]
    BRINGMANN A, IANDIEV I, PANNICKE T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects[J]. Prog Retin Eye Res, 2009, 28(6): 423-451. doi: 10.1016/j.preteyeres.2009.07.001
    [12]
    BRINGMANN A, PANNICKE T, GROSCHE J, et al. Müller cells in the healthy and diseased Retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. doi: 10.1016/j.preteyeres.2006.05.003
    [13]
    BRINGMANN A, PANNICKE T, BIEDERMANN B, et al. Role of retinal glial cells in neurotransmitter uptake and metabolism[J]. Neurochem Int, 2009, 54(3/4): 143-160.
    [14]
    PFEIFFER R L, MARC R E, JONES B W. Müller cell metabolic signatures: evolutionary conservation and disruption in disease[J]. Trends Endocrinol Metab, 2020, 31(4): 320-329. doi: 10.1016/j.tem.2020.01.005
    [15]
    GUIDRY C. The role of Müller cells in fibrocontractive retinal disorders[J]. Prog Retin Eye Res, 2005, 24(1): 75-86. doi: 10.1016/j.preteyeres.2004.07.001
    [16]
    FEIST R M Jr, KING J L, MORRIS R, et al. Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2014, 252(2): 347-357. doi: 10.1007/s00417-013-2531-0
    [17]
    PASTOR J C, ROJAS J, PASTOR-IDOATE S, et al. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences[J]. Prog Retin Eye Res, 2016, 51: 125-155. doi: 10.1016/j.preteyeres.2015.07.005
    [18]
    PASTOR J C, MÉNDEZ M C, DE LA FUENTE M A, et al. Intraretinal immunohistochemistry findings in proliferative vitreoretinopathy with retinal shortening[J]. Ophthalmic Res, 2006, 38(4): 193-200. doi: 10.1159/000093070
    [19]
    EASTLAKE K, BANERJEE P J, ANGBOHANG A, et al. Müller Glia as an important source of cytokines and inflammatory factors present in the gliotic Retina during proliferative vitreoretinopathy[J]. Glia, 2016, 64(4): 495-506. doi: 10.1002/glia.22942
    [20]
    PETERS M A, BURKE J M, CLOWRY M, et al. Development of traction retinal detachments following intravitreal injections of retinal Muller and pigment epithelial cells[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 1986, 224(6): 554-563. doi: 10.1007/BF02154745
    [21]
    DARBY I A, LAVERDET B, BONTÉF, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clin Cosmet Investig Dermatol, 2014, 7: 301-311.
    [22]
    WYNN T A, RAMALINGAM T R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease[J]. Nat Med, 2012, 18(7): 1028-1040. doi: 10.1038/nm.2807
    [23]
    SHU D Y, LOVICU F J. Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis[J]. Prog Retin Eye Res, 2017, 60: 44-65. doi: 10.1016/j.preteyeres.2017.08.001
    [24]
    PENNOCK S, HADDOCK L J, ELIOTT D, et al. Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy[J]. Prog Retin Eye Res, 2014, 40: 16-34. doi: 10.1016/j.preteyeres.2013.12.006
    [25]
    MARTÍN F, PASTOR J C, DE LA RÚA E R, et al. Proliferative vitreoretinopathy: cytologic findings in vitreous samples[J]. Ophthalmic Res, 2003, 35(4): 232-238. doi: 10.1159/000071175
    [26]
    HOU H Y, NUDLEMAN E, WEINREB R N. Animal models of proliferative vitreoretinopathy and their use in pharmaceutical investigations[J]. Ophthalmic Res, 2018, 60(4): 195-204. doi: 10.1159/000488492
    [27]
    WONG C A, POTTER M J, CUI J Z, et al. Induction of proliferative vitreoretinopathy by a unique line of human retinal pigment epithelial cells[J]. Can J Ophthalmol, 2002, 37(4): 211-220. doi: 10.1016/S0008-4182(02)80112-0
    [28]
    朱丹, 赵明威, 黎晓新. Dispase金属蛋白酶诱导的兔增殖性玻璃体视网膜病变模型[J]. 眼视光学杂志, 2006, 8(1): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYK200601013.htm
    [29]
    DAFTARIAN N, BAIGY O, SURI F, et al. Intravitreal connective tissue growth factor neutralizing antibody or bevacizumab alone or in combination for prevention of proliferative vitreoretinopathy in an experimental model[J]. Exp Eye Res, 2021, 208: 108622. doi: 10.1016/j.exer.2021.108622
    [30]
    HE S K, CHEN Y X, KHANKAN R, et al. Connective tissue growth factor as a mediator of intraocular fibrosis[J]. Invest Ophthalmol Vis Sci, 2008, 49(9): 4078-4088. doi: 10.1167/iovs.07-1302
    [31]
    ISHIKAWA K, HE S K, TERASAKI H, et al. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy[J]. Sci Rep, 2015, 5: 16386. doi: 10.1038/srep16386
    [32]
    WANG H F, MA J X, SHANG Q L, et al. Safety, pharmacokinetics, and prevention effect of intraocular crocetin in proliferative vitreoretinopathy[J]. Biomedecine Pharmacother, 2019, 109: 1211-1220. doi: 10.1016/j.biopha.2018.10.193
    [33]
    YAO H P, GE T D, ZHANG Y, et al. BMP7 antagonizes proliferative vitreoretinopathy through retinal pigment epithelial fibrosis in vivo and in vitro[J]. FASEB J, 2019, 33(3): 3212-3224. doi: 10.1096/fj.201800858RR
    [34]
    HIROSE F, KIRYU J, TABATA Y, et al. Experimental proliferative vitreoretinopathy in rabbits by delivery of bioactive proteins with gelatin microspheres[J]. Eur J Pharm Biopharm, 2018, 129: 267-272. doi: 10.1016/j.ejpb.2018.06.013
    [35]
    MOON S W, SUN Y Y, WARTHER D, et al. New model of proliferative vitreoretinopathy in rabbit for drug delivery and pharmacodynamic studies[J]. Drug Deliv, 2018, 25(1): 600-610. doi: 10.1080/10717544.2018.1440664
    [36]
    CHEN Y, WU B X, HE J F, et al. Effectively intervening epithelial-mesenchymal transition of retinal pigment epithelial cells with a combination of ROCK and TGF-β signaling inhibitors[J]. Invest Ophthalmol Vis Sci, 2021, 62(4): 21. doi: 10.1167/iovs.62.4.21
    [37]
    DING X, BAI Y J, ZHU X M, et al. The effects of pleiotrophin in proliferative vitreoretinopathy[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2017, 255(5): 873-884. doi: 10.1007/s00417-016-3582-9
    [38]
    TIKHONOVICH M V, ERDIAKOV A K, GAVRILOVA S A. Nonsteroid anti-inflammatory therapy suppresses the development of proliferative vitreoretinopathy more effectively than a steroid one[J]. Int Ophthalmol, 2018, 38(4): 1365-1378. doi: 10.1007/s10792-017-0594-3
    [39]
    USLUBAS I, KANLI A, KASAP M, et al. Effect of aflibercept on proliferative vitreoretinopathy: Proteomic analysis in an experimental animal model[J]. Exp Eye Res, 2021, 203: 108425. doi: 10.1016/j.exer.2020.108425
    [40]
    LIN M L, LI Y P, LI Z R, et al. Macrophages acquire fibroblast characteristics in a rat model of proliferative vitreoretinopathy[J]. Ophthalmic Res, 2011, 45(4): 180-190. doi: 10.1159/000320496
    [41]
    HAN H, ZHAO X, LIAO M Y, et al. Activated blood coagulation factor X (FXa) contributes to the development of traumatic PVR through promoting RPE epithelial-mesenchymal transition[J]. Invest Ophthalmol Vis Sci, 2021, 62(9): 29. doi: 10.1167/iovs.62.9.29
    [42]
    HEFFER A, WANG V, SRIDHAR J, et al. A mouse model of proliferative vitreoretinopathy induced by intravitreal injection of gas and RPE cells[J]. Transl Vis Sci Technol, 2020, 9(7): 9. doi: 10.1167/tvst.9.7.9
    [43]
    HEFFER A M, WANG V, LIBBY R T, et al. Salinomycin inhibits proliferative vitreoretinopathy formation in a mouse model[J]. PLoS One, 2020, 15(12): e0243626. doi: 10.1371/journal.pone.0243626
    [44]
    UMAZUME K, BARAK Y, MCDONALD K, et al. Proliferative vitreoretinopathy in the Swine-a new model[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4910-4916. doi: 10.1167/iovs.12-9768
    [45]
    UEDA S, NUNN B M, CHAUHAN R, et al. Sustained dasatinib treatment prevents early fibrotic changes following ocular trauma[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2021, 259(5): 1103-1111. doi: 10.1007/s00417-020-05037-4
    [46]
    WONG C W, BUSOY J M F, CHEUNG N, et al. Endogenous or exogenous retinal pigment epithelial cells: a comparison of two experimental animal models of proliferative vitreoretinopathy[J]. Transl Vis Sci Technol, 2020, 9(9): 46. doi: 10.1167/tvst.9.9.46
  • Related Articles

    [1]LI Bo, ZHANG Jie. Effects of doxorubicin combined with cisplatin on efficacy, survival rate and toxicity in cervical cancer patients with radiotherapy[J]. Journal of Clinical Medicine in Practice, 2020, 24(11): 108-110. DOI: 10.7619/jcmp.202011029
    [2]ZHAO Lianghui, XU Zhongju, WU Wei. Effect of comprehensive nursing for nasopharyngeal carcinoma patients with oral mucosal reaction caused by radiotherapy[J]. Journal of Clinical Medicine in Practice, 2017, (14): 133-135. DOI: 10.7619/jcmp.201714040
    [3]WANG Ying, YUAN Xin, YAN Mingquan. The clinical observation of enternal nutrition on the radiotherapy of nasopharyngeal carcinoma patients after percutaneous endoscopic gastrostomy[J]. Journal of Clinical Medicine in Practice, 2014, (9): 93-95. DOI: 10.7619/jcmp.201409027
    [4]MA Li, MA Xiaoxia, LV Shuling. The influence of individualized nursing intervention on cancer-related fatigue in nasopharyngeal carcinoma patients with radiotherapy[J]. Journal of Clinical Medicine in Practice, 2014, (8): 10-13. DOI: 10.7619/jcmp.201408004
    [5]LIU Xiaojing, CHEN Suping, ZHANG Xizhi, HUA Wei. Application of PET/CT image fusion for conformal radiotherapy in nasopharyngeal carcinoma[J]. Journal of Clinical Medicine in Practice, 2013, (19): 41-43. DOI: 10.7619/jcmp.201319014
    [6]CHEN Ling. Application of cognitive behavioral nursing in treatment of nasopharyngeal carcinoma patients with radiotherapy[J]. Journal of Clinical Medicine in Practice, 2013, (18): 10-12. DOI: 10.7619/jcmp.201318004
    [7]WU Xinghong. Effect of evidence-based nursing on treatment of nasopharyngeal carcinoma patients with radiotherapy[J]. Journal of Clinical Medicine in Practice, 2013, (18): 7-9. DOI: 10.7619/jcmp.201318003
    [8]CHEN Yan, LV Shuling, ZHAO Xiaoli. Early prevention and nursing intervention for radioactive oral mucosal reactions in patients with nasopharyngeal carcinoma[J]. Journal of Clinical Medicine in Practice, 2013, (8): 18-20. DOI: 10.7619/jcmp.201308007
    [9]ZHAI Zhenghuan, ZHOU Xiang, JI Pingping. Nursing countermeasures for mitigating post-radiotherapy adverse reactions in patients with nasopharyngeal carcinoma[J]. Journal of Clinical Medicine in Practice, 2013, (8): 15-17. DOI: 10.7619/jcmp.201308006
    [10]YANG Xuan. Observation on the effects of compound matrine injection on the toxic and side effects in chemotherapy of breast cancer[J]. Journal of Clinical Medicine in Practice, 2013, (5): 105-107. DOI: 10.7619/jcmp.201305034
  • Cited by

    Periodical cited type(5)

    1. 赵蕾,魏岚,费晓璐. 血糖间隙对药物保守治疗脑卒中患者症状性颅内出血的预测价值. 国际老年医学杂志. 2024(04): 414-418 .
    2. 廖青玲. 血清CK-MB、MYO、cTnI、NT-proBNP联合检测在急性心肌梗死早期诊断中应用价值. 黑龙江医学. 2024(15): 1844-1846 .
    3. 韩佳玉,徐明星. 基于循证理念的延续护理对老年心血管疾病患者介入术后再发主要心血管不良事件的影响. 中国医药导报. 2023(10): 170-173+193 .
    4. 刘亚楠,张逸,吴慧. 司美格鲁肽对2型糖尿病患者心血管危险因素的影响. 糖尿病新世界. 2023(10): 73-76 .
    5. 张俊峰,苏绍红. 急性心肌梗死主要不良心血管事件的血清指标预测研究. 实用临床医药杂志. 2023(23): 31-36+42 . 本站查看

    Other cited types(0)

Catalog

    Article views (237) PDF downloads (33) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return