GONG Xuechun, WU Zhifeng. Progression of cellular mechanism of proliferative vitreoretinal and its animal model[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 139-143. DOI: 10.7619/jcmp.20214495
Citation: GONG Xuechun, WU Zhifeng. Progression of cellular mechanism of proliferative vitreoretinal and its animal model[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 139-143. DOI: 10.7619/jcmp.20214495

Progression of cellular mechanism of proliferative vitreoretinal and its animal model

More Information
  • Received Date: November 15, 2021
  • Available Online: April 14, 2022
  • Published Date: April 14, 2022
  • Proliferative vitreoretinal (PVR) is a serious complication of rhegmatogenous retinal detachment (RRD) and its postoperative development. The mechanism of PVR has not been fully elucidated, which mainly involves the activation and excessive proliferation of various retinal cells. At present, the treatment method of PVR is single, and surgery is the main treatment for PVR. However, surgery cannot prevent and stop excessive cell proliferation in the eyes, so it is urgent to explore different treatment methods. In this paper, the mechanism of action of different retinal cells in the process of PVR and the progress of its animal models were summarized, in order to provide a basis for exploring different therapeutic methods.
  • [1]
    MACHEMER R, AABERG T M, FREEMAN H M, et al. An updated classification of retinal detachment with proliferative vitreoretinopathy[J]. Am J Ophthalmol, 1991, 112(2): 159-165. doi: 10.1016/S0002-9394(14)76695-4
    [2]
    ADELMAN R A, PARNES A J, MICHALEWSKA Z, et al. Clinical variables associated with failure of retinal detachment repair: the European vitreo-retinal society retinal detachment study report number 4[J]. Ophthalmology, 2014, 121(9): 1715-1719. doi: 10.1016/j.ophtha.2014.03.012
    [3]
    PATEL N N, BUNCE C, ASARIA R H, et al. Resources involved in managing retinal detachment complicated by proliferative vitreoretinopathy[J]. Retina, 2004, 24(6): 883-887. doi: 10.1097/00006982-200412000-00007
    [4]
    GARWEG J G, TAPPEINER C, HALBERSTADT M. Pathophysiology of proliferative vitreoretinopathy in retinal detachment[J]. Surv Ophthalmol, 2013, 58(4): 321-329. doi: 10.1016/j.survophthal.2012.12.004
    [5]
    CHEN X Y, YANG W M, DENG X Q, et al. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway[J]. Mol Vis, 2020, 26: 517-529.
    [6]
    TAMIYA S, LIU L, KAPLAN H J. Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact[J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2755-2763. doi: 10.1167/iovs.09-4725
    [7]
    TAMIYA S, KAPLAN H J. Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy[J]. Exp Eye Res, 2016, 142: 26-31. doi: 10.1016/j.exer.2015.02.008
    [8]
    LYU Y L, XU W, ZHANG J P, et al. Protein kinase A inhibitor H89 attenuates experimental proliferative vitreoretinopathy[J]. Invest Ophthalmol Vis Sci, 2020, 61(2): 1. doi: 10.1167/iovs.61.2.1
    [9]
    MA X Q, LONG C D, WANG F Y, et al. METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via Wnt/β-catenin pathway[J]. J Cell Mol Med, 2021, 25(9): 4220-4234. doi: 10.1111/jcmm.16476
    [10]
    CUI L, LYU Y L, JIN X L, et al. miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1[J]. Ann Transl Med, 2019, 7(23): 751. doi: 10.21037/atm.2019.11.90
    [11]
    BRINGMANN A, IANDIEV I, PANNICKE T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects[J]. Prog Retin Eye Res, 2009, 28(6): 423-451. doi: 10.1016/j.preteyeres.2009.07.001
    [12]
    BRINGMANN A, PANNICKE T, GROSCHE J, et al. Müller cells in the healthy and diseased Retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424. doi: 10.1016/j.preteyeres.2006.05.003
    [13]
    BRINGMANN A, PANNICKE T, BIEDERMANN B, et al. Role of retinal glial cells in neurotransmitter uptake and metabolism[J]. Neurochem Int, 2009, 54(3/4): 143-160.
    [14]
    PFEIFFER R L, MARC R E, JONES B W. Müller cell metabolic signatures: evolutionary conservation and disruption in disease[J]. Trends Endocrinol Metab, 2020, 31(4): 320-329. doi: 10.1016/j.tem.2020.01.005
    [15]
    GUIDRY C. The role of Müller cells in fibrocontractive retinal disorders[J]. Prog Retin Eye Res, 2005, 24(1): 75-86. doi: 10.1016/j.preteyeres.2004.07.001
    [16]
    FEIST R M Jr, KING J L, MORRIS R, et al. Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2014, 252(2): 347-357. doi: 10.1007/s00417-013-2531-0
    [17]
    PASTOR J C, ROJAS J, PASTOR-IDOATE S, et al. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences[J]. Prog Retin Eye Res, 2016, 51: 125-155. doi: 10.1016/j.preteyeres.2015.07.005
    [18]
    PASTOR J C, MÉNDEZ M C, DE LA FUENTE M A, et al. Intraretinal immunohistochemistry findings in proliferative vitreoretinopathy with retinal shortening[J]. Ophthalmic Res, 2006, 38(4): 193-200. doi: 10.1159/000093070
    [19]
    EASTLAKE K, BANERJEE P J, ANGBOHANG A, et al. Müller Glia as an important source of cytokines and inflammatory factors present in the gliotic Retina during proliferative vitreoretinopathy[J]. Glia, 2016, 64(4): 495-506. doi: 10.1002/glia.22942
    [20]
    PETERS M A, BURKE J M, CLOWRY M, et al. Development of traction retinal detachments following intravitreal injections of retinal Muller and pigment epithelial cells[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 1986, 224(6): 554-563. doi: 10.1007/BF02154745
    [21]
    DARBY I A, LAVERDET B, BONTÉF, et al. Fibroblasts and myofibroblasts in wound healing[J]. Clin Cosmet Investig Dermatol, 2014, 7: 301-311.
    [22]
    WYNN T A, RAMALINGAM T R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease[J]. Nat Med, 2012, 18(7): 1028-1040. doi: 10.1038/nm.2807
    [23]
    SHU D Y, LOVICU F J. Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis[J]. Prog Retin Eye Res, 2017, 60: 44-65. doi: 10.1016/j.preteyeres.2017.08.001
    [24]
    PENNOCK S, HADDOCK L J, ELIOTT D, et al. Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy[J]. Prog Retin Eye Res, 2014, 40: 16-34. doi: 10.1016/j.preteyeres.2013.12.006
    [25]
    MARTÍN F, PASTOR J C, DE LA RÚA E R, et al. Proliferative vitreoretinopathy: cytologic findings in vitreous samples[J]. Ophthalmic Res, 2003, 35(4): 232-238. doi: 10.1159/000071175
    [26]
    HOU H Y, NUDLEMAN E, WEINREB R N. Animal models of proliferative vitreoretinopathy and their use in pharmaceutical investigations[J]. Ophthalmic Res, 2018, 60(4): 195-204. doi: 10.1159/000488492
    [27]
    WONG C A, POTTER M J, CUI J Z, et al. Induction of proliferative vitreoretinopathy by a unique line of human retinal pigment epithelial cells[J]. Can J Ophthalmol, 2002, 37(4): 211-220. doi: 10.1016/S0008-4182(02)80112-0
    [28]
    朱丹, 赵明威, 黎晓新. Dispase金属蛋白酶诱导的兔增殖性玻璃体视网膜病变模型[J]. 眼视光学杂志, 2006, 8(1): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYK200601013.htm
    [29]
    DAFTARIAN N, BAIGY O, SURI F, et al. Intravitreal connective tissue growth factor neutralizing antibody or bevacizumab alone or in combination for prevention of proliferative vitreoretinopathy in an experimental model[J]. Exp Eye Res, 2021, 208: 108622. doi: 10.1016/j.exer.2021.108622
    [30]
    HE S K, CHEN Y X, KHANKAN R, et al. Connective tissue growth factor as a mediator of intraocular fibrosis[J]. Invest Ophthalmol Vis Sci, 2008, 49(9): 4078-4088. doi: 10.1167/iovs.07-1302
    [31]
    ISHIKAWA K, HE S K, TERASAKI H, et al. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy[J]. Sci Rep, 2015, 5: 16386. doi: 10.1038/srep16386
    [32]
    WANG H F, MA J X, SHANG Q L, et al. Safety, pharmacokinetics, and prevention effect of intraocular crocetin in proliferative vitreoretinopathy[J]. Biomedecine Pharmacother, 2019, 109: 1211-1220. doi: 10.1016/j.biopha.2018.10.193
    [33]
    YAO H P, GE T D, ZHANG Y, et al. BMP7 antagonizes proliferative vitreoretinopathy through retinal pigment epithelial fibrosis in vivo and in vitro[J]. FASEB J, 2019, 33(3): 3212-3224. doi: 10.1096/fj.201800858RR
    [34]
    HIROSE F, KIRYU J, TABATA Y, et al. Experimental proliferative vitreoretinopathy in rabbits by delivery of bioactive proteins with gelatin microspheres[J]. Eur J Pharm Biopharm, 2018, 129: 267-272. doi: 10.1016/j.ejpb.2018.06.013
    [35]
    MOON S W, SUN Y Y, WARTHER D, et al. New model of proliferative vitreoretinopathy in rabbit for drug delivery and pharmacodynamic studies[J]. Drug Deliv, 2018, 25(1): 600-610. doi: 10.1080/10717544.2018.1440664
    [36]
    CHEN Y, WU B X, HE J F, et al. Effectively intervening epithelial-mesenchymal transition of retinal pigment epithelial cells with a combination of ROCK and TGF-β signaling inhibitors[J]. Invest Ophthalmol Vis Sci, 2021, 62(4): 21. doi: 10.1167/iovs.62.4.21
    [37]
    DING X, BAI Y J, ZHU X M, et al. The effects of pleiotrophin in proliferative vitreoretinopathy[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2017, 255(5): 873-884. doi: 10.1007/s00417-016-3582-9
    [38]
    TIKHONOVICH M V, ERDIAKOV A K, GAVRILOVA S A. Nonsteroid anti-inflammatory therapy suppresses the development of proliferative vitreoretinopathy more effectively than a steroid one[J]. Int Ophthalmol, 2018, 38(4): 1365-1378. doi: 10.1007/s10792-017-0594-3
    [39]
    USLUBAS I, KANLI A, KASAP M, et al. Effect of aflibercept on proliferative vitreoretinopathy: Proteomic analysis in an experimental animal model[J]. Exp Eye Res, 2021, 203: 108425. doi: 10.1016/j.exer.2020.108425
    [40]
    LIN M L, LI Y P, LI Z R, et al. Macrophages acquire fibroblast characteristics in a rat model of proliferative vitreoretinopathy[J]. Ophthalmic Res, 2011, 45(4): 180-190. doi: 10.1159/000320496
    [41]
    HAN H, ZHAO X, LIAO M Y, et al. Activated blood coagulation factor X (FXa) contributes to the development of traumatic PVR through promoting RPE epithelial-mesenchymal transition[J]. Invest Ophthalmol Vis Sci, 2021, 62(9): 29. doi: 10.1167/iovs.62.9.29
    [42]
    HEFFER A, WANG V, SRIDHAR J, et al. A mouse model of proliferative vitreoretinopathy induced by intravitreal injection of gas and RPE cells[J]. Transl Vis Sci Technol, 2020, 9(7): 9. doi: 10.1167/tvst.9.7.9
    [43]
    HEFFER A M, WANG V, LIBBY R T, et al. Salinomycin inhibits proliferative vitreoretinopathy formation in a mouse model[J]. PLoS One, 2020, 15(12): e0243626. doi: 10.1371/journal.pone.0243626
    [44]
    UMAZUME K, BARAK Y, MCDONALD K, et al. Proliferative vitreoretinopathy in the Swine-a new model[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4910-4916. doi: 10.1167/iovs.12-9768
    [45]
    UEDA S, NUNN B M, CHAUHAN R, et al. Sustained dasatinib treatment prevents early fibrotic changes following ocular trauma[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2021, 259(5): 1103-1111. doi: 10.1007/s00417-020-05037-4
    [46]
    WONG C W, BUSOY J M F, CHEUNG N, et al. Endogenous or exogenous retinal pigment epithelial cells: a comparison of two experimental animal models of proliferative vitreoretinopathy[J]. Transl Vis Sci Technol, 2020, 9(9): 46. doi: 10.1167/tvst.9.9.46
  • Related Articles

    [1]JU Shande, GUO Zhiqiang, WANG Yongfang, YU Yang, WANG Yanyan. Effect of obstructive sleep apnea syndrome on non-arteritic anterior ischemic optic neuropathy[J]. Journal of Clinical Medicine in Practice, 2023, 27(18): 49-51, 58. DOI: 10.7619/jcmp.20232194
    [2]LIU Yihan, ZHU Ning, XUE Mengzhou, ZHU Hongshan, CHEN Chen. Effect of sleep status on mood and daytime fatigue in patients with obstructive sleep apnea hypopnea syndrome complicating with stroke[J]. Journal of Clinical Medicine in Practice, 2023, 27(17): 77-81. DOI: 10.7619/jcmp.20231598
    [3]YANG Ping, LIU Rui, XUE Yani, WANG Yi, ZHANG Min, CHEN Yongjin, LI Qiang. Effect of Er: YAG laser in the treatment of patients with obstructive sleep apnea hypopnea syndrome[J]. Journal of Clinical Medicine in Practice, 2023, 27(17): 1-4, 12. DOI: 10.7619/jcmp.20231483
    [4]LI Ning, WU Feng, HU Tao. Research progress of hypoxia-inducible factor-1α and obstructive sleep apnea associated hypertension[J]. Journal of Clinical Medicine in Practice, 2023, 27(7): 138-142. DOI: 10.7619/jcmp.20223407
    [5]DONG Zhishuang, LI Guangyuan, LIU Wen, KONG Fanxin, WANG Yonghuai, MA Chunyan. Research progress on evaluation of arterial stiffness by pulse wave velocity in patients with obstructive sleep apnea hypopnea syndrome[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 135-138. DOI: 10.7619/jcmp.20213566
    [6]CAO Sipei, WANG Hongmei, WU Feng. Value of nocturnal pulse oxygen saturation in predicting patients with obstructive sleep apnea hypopnea syndrome complicating with type 2 diabetes[J]. Journal of Clinical Medicine in Practice, 2022, 26(5): 75-78, 85. DOI: 10.7619/jcmp.20214030
    [7]CHEN Yan, WANG Xiaoqing, HAO Hairong, BAI Feng, ZHANG Yong, CHENG Liang, HU Wen. Effect of exenatide on hypoxia status of patients with type 2 diabetes mellitus complicated with obstructive sleep apnea hypopnea syndrome[J]. Journal of Clinical Medicine in Practice, 2020, 24(10): 77-81. DOI: 10.7619/jcmp.202010019
    [8]SHI Cuiling. Clinical observation of life style intervention for patients with obstructive sleep apnea hypopnea syndrome[J]. Journal of Clinical Medicine in Practice, 2017, (14): 130-132,149. DOI: 10.7619/jcmp.201714039
    [9]FENG Yongjun, LIN Chong, ZENG Chunrong, WU Xiangmin. Changes and significance of hemorheological indexes of patients with obstructive sleep apnea hypopnea syndrome[J]. Journal of Clinical Medicine in Practice, 2015, (5): 11-14. DOI: 10.7619/jcmp.201505004
    [10]YU Jieming, SUN Xiuli, GAO Ning. Clinical observation of surgeries on treatment of children with obstructive sleep apnea hypopnea syndrome[J]. Journal of Clinical Medicine in Practice, 2014, (15): 59-62. DOI: 10.7619/jcmp.201415018
  • Cited by

    Periodical cited type(6)

    1. 钱新民,丁兆生,李佟,徐春丽,张万权,周芳. 奥沙西泮联合度洛西汀治疗抑郁症的临床效果. 临床合理用药. 2024(08): 71-73 .
    2. 吴书清,黄蕾,王丽君,秦艳,孙英,闵凌峰,刘异凡,刘彦. 光电容积脉搏波描记法对重症患者合并阻塞性睡眠呼吸暂停综合征的诊断价值. 实用临床医药杂志. 2024(11): 1-5 . 本站查看
    3. 原改兰,罗少亚,张兵兵. 分析NSCLC患者血清学指标与OSAS之间的相关性. 罕少疾病杂志. 2024(08): 45-46 .
    4. 胡佩瑞,张亚倩,阎妍,陈玺. 阻塞性睡眠呼吸暂停低通气综合征患者HIF-1a、IGF-1及HGF的表达与意义. 分子诊断与治疗杂志. 2023(06): 939-942 .
    5. 朱淑芹,邓旭,魏吉林,刘治国. 中性粒细胞与淋巴细胞比值、胱抑素C在2型糖尿病周围神经病变中的诊断价值. 国际检验医学杂志. 2023(14): 1709-1712 .
    6. 孙雅琪. 睡眠呼吸暂停低通气综合征筛查中动态心电图推导呼吸曲线技术的应用效果. 中国医疗器械信息. 2022(22): 58-60 .

    Other cited types(1)

Catalog

    Article views (238) PDF downloads (33) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return