Citation: | QIU Shijie, TONG Liquan. Research progress in cell membrane-coated nanoparticles in the treatment of inflammatory diseases and tumors[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 119-124. DOI: 10.7619/jcmp.20221949 |
Drug-loaded nanoparticles have been used in the process of diagnosis and treatment of diseases, but they lack targeting specificity, most of the drugs they carried cannot reach the target organs after entering the human body and are easily recognized and swallowed by the macrophage system during delivery, making it difficult to acquire satisfactory therapeutic outcomes. Natural cell membrane-coated nanoparticles inherit the specific biological activity of source cells, characterized by low immunogenicity, long half-life, low toxicity, and congenital targeting specificity, which make up for the shortcomings of non-membrane-coated nanoparticles. The drug delivery strategy based on the cell membrane is breaking the traditional concept and becoming a promising way of drug delivery. Cell membrane-coated nanoparticles, including the typically utilized source cell membranes, the process of preparation and characterization, and their application in inflammatory diseases and tumors, were reviewed in this paper.
[1] |
FANG R H, KROLL A V, GAO W, et al. Cell membrane coating nanotechnology[J]. Adv Mater, 2018, 30(23): e1706759. doi: 10.1002/adma.201706759
|
[2] |
FANG R H, JIANG Y, FANG J C, et al. Cell membrane-derived nanomaterials for biomedical applications[J]. Biomaterials, 2017, 128: 69-83. doi: 10.1016/j.biomaterials.2017.02.041
|
[3] |
ZHANG M, DU Y, WANG S, et al. A review of biomimetic nanoparticle drug delivery systems based on cell membranes[J]. Drug Des Devel Ther, 2020, 14: 5495-5503. doi: 10.2147/DDDT.S282368
|
[4] |
XIA Q, ZHANG Y, LI Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application[J]. Acta Pharm Sin B, 2019, 9(4): 675-689. doi: 10.1016/j.apsb.2019.01.011
|
[5] |
HAN Y, ZHAO R, XU F. Neutrophil-based delivery systems for nanotherapeutics[J]. Small, 2018, 14(42): e1801674. doi: 10.1002/smll.201801674
|
[6] |
REN Y, MIAO C, TANG L, et al. Homotypic cancer cell membranes camouflaged nanoparticles for targeting drug delivery and enhanced chemo-photothermal therapy of glioma[J]. Pharmaceuticals (Basel), 2022, 15(2): 157. doi: 10.3390/ph15020157
|
[7] |
KUNDE S S, WAIRKAR S. Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy[J]. Int J Pharm, 2021, 598: 120395. doi: 10.1016/j.ijpharm.2021.120395
|
[8] |
WU X, LI Y, RAZA F, et al. Red blood cell membrane-camouflaged tedizolid phosphate-loaded PLGA nanoparticles for bacterial-infection therapy[J]. Pharmaceutics, 2021, 13(1): 99. doi: 10.3390/pharmaceutics13010099
|
[9] |
LUK B T, ZHANG L. Cell membrane-camouflaged nanoparticles for drug delivery[J]. J Control Release, 2015, 220(pt b): 600-607.
|
[10] |
WANG H, LIU Y, HE R, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery[J]. Biomater Sci, 2020, 8(2): 552-568. doi: 10.1039/C9BM01392J
|
[11] |
BELHADJ Z, HE B, DENG H L, et al. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine[J]. J Extracell Vesicles, 2020, 9(1): 1806444. doi: 10.1080/20013078.2020.1806444
|
[12] |
XU C H, YE P J, ZHOU Y C, et al. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy[J]. Acta Biomater, 2020, 105: 1-14. doi: 10.1016/j.actbio.2020.01.036
|
[13] |
ZOU S, WANG B, WANG C, et al. Cell membrane-coated nanoparticles: research advances[J]. Nanomedicine: Lond, 2020, 15(6): 625-641. doi: 10.2217/nnm-2019-0388
|
[14] |
杨咏琪, 李洪亮, 梁景岩. 纳米仿生技术在动脉粥样硬化中的应用研究进展[J]. 实用临床医药杂志, 2022, 26(10): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL202210028.htm
|
[15] |
LIU J, REN L, LI S, et al. The biology, function, and applications of exosomes in cancer[J]. Acta Pharm Sin B, 2021, 11(9): 2783-2797. doi: 10.1016/j.apsb.2021.01.001
|
[16] |
ZHEN X, CHENG P, PU K. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy[J]. Small, 2019, 15(1): e1804105. doi: 10.1002/smll.201804105
|
[17] |
OROOJALIAN F, BEYGI M, BARADARAN B, et al. Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy[J]. Small, 2021, 17(12): e2006484. doi: 10.1002/smll.202006484
|
[18] |
GAO J, DONG X, SU Y, et al. Human neutrophil membrane-derived nanovesicles as a drug delivery platform for improved therapy of infectious diseases[J]. Acta Biomater, 2021, 123: 354-363. doi: 10.1016/j.actbio.2021.01.020
|
[19] |
YE S F, WANG F F, FAN Z X, et al. Light/pH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15262-15275. doi: 10.1021/acsami.9b00897
|
[20] |
CHU D, GAO J, WANG Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection[J]. ACS Nano, 2015, 9(12): 11800-11811. doi: 10.1021/acsnano.5b05583
|
[21] |
SPITE M, NORLING L V, SUMMERS L, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial Sepsis[J]. Nature, 2009, 461(7268): 1287-1291. doi: 10.1038/nature08541
|
[22] |
DONG X Y, GAO J, ZHANG C Y, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke[J]. ACS Nano, 2019, 13(2): 1272-1283.
|
[23] |
WANG Y, WANG Y, LI S, et al. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke[J]. J Nanobiotechnology, 2021, 19(1): 331. doi: 10.1186/s12951-021-01067-0
|
[24] |
ZHOU X, CAO X, TU H, et al. Inflammation-targeted delivery of celastrol via neutrophil membrane-coated nanoparticles in the management of acute pancreatitis[J]. Mol Pharm, 2019, 16(3): 1397-1405. doi: 10.1021/acs.molpharmaceut.8b01342
|
[25] |
ZHAO Y Z, ZHUGE D L, TONG M Q, et al. Ulcerative colitis-specific delivery of keratinocyte growth factor by neutrophils-simulated liposomes facilitates the morphologic and functional recovery of the damaged colon through alleviating the inflammation[J]. J Control Release, 2019, 299: 90-106. doi: 10.1016/j.jconrel.2019.02.034
|
[26] |
闻君侠, 王瑾, 江彬锋, 等. M2型巨噬细胞来源的外泌体对类风湿关节炎小鼠的作用及其机制研究[J]. 中国现代医学杂志, 2021, 31(23): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDY202123006.htm
|
[27] |
ZHANG Q, DEHAINI D, ZHANG Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J]. Nat Nanotechnol, 2018, 13(12): 1182-1190. doi: 10.1038/s41565-018-0254-4
|
[28] |
YANG L, ZANG G C, LI J W, et al. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives[J]. Regen Biomater, 2020, 7(4): 349-358. doi: 10.1093/rb/rbaa019
|
[29] |
SONG Y, HUANG Z, LIU X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice[J]. Nanomedicine, 2019, 15(1): 13-24. doi: 10.1016/j.nano.2018.08.002
|
[30] |
HU C M, FANG R H, WANG K C, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526(7571): 118-121. doi: 10.1038/nature15373
|
[31] |
PARK J, CHOI Y, CHANG H, et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment[J]. Theranostics, 2019, 9(26): 8073-8090. doi: 10.7150/thno.37198
|
[32] |
GARRIDO-CASTRO A C, LIN N U, POLYAK K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment[J]. Cancer Discov, 2019, 9(2): 176-198. doi: 10.1158/2159-8290.CD-18-1177
|
[33] |
HUANG J, LAI W, WANG Q, et al. Effective triple-negative breast cancer targeted treatment using iRGD-modified RBC membrane-camouflaged nanoparticles[J]. Int J Nanomedicine, 2021, 16: 7497-7515. doi: 10.2147/IJN.S321071
|
[34] |
FU Q, LV P, CHEN Z, et al. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane[J]. Nanoscale, 2015, 7(9): 4020-4030. doi: 10.1039/C4NR07027E
|
[35] |
CHI C L, LI F W, LIU H B, et al. Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo[J]. J Nanoparticle Res, 2019, 21(7): 1-10.
|
[36] |
SURYAPRAKASH S, LAO Y H, CHO H Y, et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy[J]. Nano Lett, 2019, 19(3): 1701-1705. doi: 10.1021/acs.nanolett.8b04697
|
[37] |
XUE J, ZHAO Z, ZHANG L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12(7): 692-700. doi: 10.1038/nnano.2017.54
|
[38] |
CAO X, HU Y, LUO S, et al. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma[J]. Acta Pharm Sin B, 2019, 9(3): 575-589. doi: 10.1016/j.apsb.2018.12.009
|
[39] |
ZHOU X, YU R, CAO X, et al. Bio-mimicking nanoparticles for targeted therapy of malignant melanoma[J]. J Biomed Nanotechnol, 2019, 15(5): 993-1004. doi: 10.1166/jbn.2019.2739
|
[40] |
XU P, ZUO H, CHEN B, et al. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma[J]. Sci Rep, 2017, 7: 42632. doi: 10.1038/srep42632
|
[41] |
CHENG S, XU C, JIN Y, et al. Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer[J]. Adv Sci: Weinh, 2020, 7(7): 1903301. doi: 10.1002/advs.201903301
|
[42] |
GUO Y Y, WANG D, SONG Q L, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma[J]. ACS Nano, 2015, 9(7): 6918-6933.
|