Citation: | ZHANG Zhijian, CHEN Hanzhi, LI Cheng, ZHOU Leting, LIU Xiaobin, SHAN Weiwei, LIU Bin, WANG Liang. Evaluation method for anemia and nutritional status in hemodialysis patients based on bioelectrical impedance vector analysis[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 50-55. DOI: 10.7619/jcmp.20231283 |
To explore the predictive value of a predictive model based on bioelectrical impedance vector analysis (BIVA) and machine learning algorithm for anemia and nutritional status in maintenance hemodialysis (MHD) patients.
The bioelectrical signial data of MHD patients measured by body composition monitor (BCM) and albumin (Alb), hemoglobin (Hb), low density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and other blood biochemical indexes data were collected. Three prediction models were established based on BIVA and three machine learning algorithms (random forest, support vector machine and Adaboost algorithm) respectively, and the prediction efficiency of the three models on Alb, LDL-C, Hb and TC indexes was compared.
The results of individual correlation analysis showed that the bioelectrical indexes were significantly correlated with the nutritional indexes (Alb, LDL-C, Hb, TC) (P < 0.05 or P < 0.01). Among the three models, the model based on random forest algorithm had the best performance, and the accuracies of predicting Alb, LDL-C, Hb and TC were 0.880, 0.879, 0.904 and 0.937, respectively.
Predictive models based on BIVA and machine learning algorithms (random forest algorithms) have high value in the assessment of anemia and nutritional status in MHD patients and can assist clinical decision making.
[1] |
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225): 709-733. doi: 10.1016/S0140-6736(20)30045-3
|
[2] |
COCKWELL P, FISHER L A. The global burden of chronic kidney disease[J]. Lancet, 2020, 395(10225): 662-664. doi: 10.1016/S0140-6736(19)32977-0
|
[3] |
RAJA S M, SEYOUM Y. Intradialytic complications among patients on twice-weekly maintenance hemodialysis: an experience from a hemodialysis center in Eritrea[J]. BMC Nephrol, 2020, 21: 1-6. doi: 10.1186/s12882-019-1645-y
|
[4] |
HIYAMUTA H, YAMADA S, TANIGUCHI M, et al. Association of hyperphosphatemia with an increased risk of sudden death in patients on hemodialysis: ten-year outcomes of the Q-Cohort Study[J]. Atherosclerosis, 2021, 316: 25-31. doi: 10.1016/j.atherosclerosis.2020.11.020
|
[5] |
KOZLOWSKA L, GROMADZINSKA J, ZWIECH R, et al. Effects of the malnutrition-eat additional meal (MEAM) diet on the serum levels of albumin and C-reactive protein in hemodialysis patients[J]. Nutrients, 2022, 14(24): 5352. doi: 10.3390/nu14245352
|
[6] |
毛雅, 姚颖. 生物电阻抗分析的临床应用[J]. 华中科技大学学报: 医学版, 2022, 51(5): 706-711. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYX202205020.htm
|
[7] |
舒亮辉, 郑梦蕾. 生物电阻抗分析在维持性透析患者中的应用进展[J]. 中华肾病研究电子杂志, 2021, 10(2): 100-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSB202102008.htm
|
[8] |
BAKDASH J Z, MARUSICH L R. Repeated measures correlation[J]. Front Psychol, 2017, 8: 456. doi: 10.3389/fpsyg.2017.00456
|
[9] |
WANG Y H, GAO L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease[J]. Front Pharmacol, 2022, 13: 800950. doi: 10.3389/fphar.2022.800950
|
[10] |
GAFTER-GVILI A, SCHECHTER A, ROZEN-ZVI B. Iron deficiency Anemia in chronic kidney disease[J]. Acta Haematol, 2019, 142(1): 44-50. doi: 10.1159/000496492
|
[11] |
林晶晶, 陈少华, 姚曦, 等. 维持性血液透析患者早期死亡率及相关危险因素分析[J]. 中华肾脏病杂志, 2020, 36(8): 595-600.
|
[12] |
王明莉, 陈德政. 维持性血液透析患者血清铁蛋白水平与预后的关系[J]. 临床肾脏病杂志, 2019, 19(4): 256-260. https://www.cnki.com.cn/Article/CJFDTOTAL-LCSB201904006.htm
|
[13] |
SCHOTMAN J, ROLLEMAN N, VAN BORREN M, et al. Accuracy of bioimpedance spectroscopy in the detection of hydration changes in patients on hemodialysis[J]. J Ren Nutr, 2023, 33(1): 193-200. doi: 10.1053/j.jrn.2021.11.004
|
[14] |
PINEDA-JUÅREZ J A, LOZADA-MELLADO M, OGATA-MEDEL M, et al. Body composition evaluated by body mass index and bioelectrical impedance vector analysis in women with rheumatoid arthritis[J]. Nutrition, 2018, 53: 49-53. doi: 10.1016/j.nut.2018.01.004
|
[15] |
MARINI E, SERGI G, SUCCA V, et al. Efficacy of specific bioelectrical impedance vector analysis (BIVA) for assessing body composition in the elderly[J]. J Nutr Health Aging, 2013, 17(6): 515-521. doi: 10.1007/s12603-012-0411-7
|
[16] |
MULASI U, KUCHNIA A J, COLE A J, et al. Bioimpedance at the bedside: current applications, limitations, and opportunities[J]. Nutr Clin Pract, 2015, 30(2): 180-193. doi: 10.1177/0884533614568155
|
[17] |
ZHANG Z J, YIN D H, CHEN H Z, et al. Evaluation of anemia, malnutrition, mineral, and bone disorder for maintenance hemodialysis patients based on bioelectrical impedance vector analysis (BIVA)[J]. Clin Exp Nephrol, 2020, 24(12): 1162-1176. doi: 10.1007/s10157-020-01945-1
|
[18] |
ONOFRIESCU M, HOGAS S, VORONEANU L, et al. Bioimpedance-guided fluid management in maintenance hemodialysis: a pilot randomized controlled trial[J]. Am J Kidney Dis, 2014, 64(1): 111-118. doi: 10.1053/j.ajkd.2014.01.420
|
[19] |
赵新菊, 蔡砺, 宋韩明, 等. 生物电阻抗矢量分析法评价维持性血液透析患者干体重初探[J]. 中国血液净化, 2009, 8(4): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJH200904006.htm
|
1. |
郭红歌. 人工上油应用于轴节类手术器械的效果分析. 辽宁医学杂志. 2019(02): 101-103 .
![]() | |
2. |
李秀英, 路珊珊. 一起灭菌后手术器械表面液体珠现象的调查. 中国感染控制杂志. 2019(07): 684-686 .
![]() |