Citation: | QIU Shi, SONG Pengfei, CHANG Zhihong, XIA Yinglong, ZHANG Lixin, LI Ran, LIAN Sibo, WANG Yixin, LIU Jie. Clinical application of cytomorphological analysis based on artificial intelligence in leukocyte classification[J]. Journal of Clinical Medicine in Practice, 2023, 27(23): 1-5, 11. DOI: 10.7619/jcmp.20232041 |
To explore the application value of automatic cytomorphological analyzer in the morphological analysis of white blood cells (WBC) in peripheral blood.
A total of 306 venous blood samples from inpatients and outpatients were randomly selected and prepared with automatic cytomorphological analyzer for WBC pre-classification. The differences between automatic cytomorphological analyzer counting, automatic blood cell analyzer counting and manual counting were compared, and the correlation between automatic cytomorphological analyzer and manual counting method was analyzed.
Compared with the other two methods, the automatic cytomorphological analyzer was able to detect more types of WBC, especially abnormal cells. There were no significant differences between automatic cytomorphological analyzer and manual counting method for 6 mature WBC types (band neutrophils, segmented neutrophils, lymphocytes, monocytes, eosinophils, and basophils), immature cells at different stages and atypical lymphocyte counts (P>0.05). Results of the 6 mature WBC types counted by the automatic cytomorphological analyzer and manual counting had favorable correlations (r>0.8).
The automatic cytomorphological analyzer can classify more types of WBC, provide WBC counting results that are highly consistent with manual microscopy, and the counting results of the two methods have a good correlation.
[1] |
BARBARA J B. Blood Cells: A Practical Guide[M]. 6th Edition. London: John Wiley & Sons Ltd, 2021: 1-21.
|
[2] |
AL-DULAIMI K, BANKS J, NUGYEN K, et al. Segmentation of white blood cell, nucleus and cytoplasm in digital haematology microscope images: a review-challenges, current and future potential techniques[J]. IEEE Rev Biomed Eng, 2021, 14: 290-306. doi: 10.1109/RBME.2020.3004639
|
[3] |
FANOUS M J, HE S H, SENGUPTA S, et al. White blood cell detection, classification and analysis using phase imaging with computational specificity (PICS)[J]. Sci Rep, 2022, 12(1): 20043. doi: 10.1038/s41598-022-21250-z
|
[4] |
LAPIC I, MILOŠ M, DOROTIC M, et al. Analytical validation of white blood cell differential and platelet assessment on the Sysmex DI-60 digital morphology analyzer[J]. Int J Lab Hematol, 2023: Epub ahead of print.
|
[5] |
ANNA M, ROSA B, ROSARIO G, et al. Comparative study of peripheral blood morphology by conventional microscopy and cellavision DM96 in hematological and non hematological diseases[J]. Blood, 2010, 116(21): 4737. doi: 10.1182/blood.V116.21.4737.4737
|
[6] |
MERINO A, PUIGVÍ L, BOLDU L, et al. Optimizing morphology through blood cell image analysis[J]. Int J Lab Hematol, 2018, 40: 54-61. doi: 10.1111/ijlh.12832
|
[7] |
尹馨, 焦娟, 常志红, 等. 外周血白细胞分类模型的建立与应用[J]. 实用临床医药杂志, 2023, 27(3): 86-90. doi: 10.7619/jcmp.20223753
|
[8] |
中华人民共和国卫生部. 白细胞分类计数参考方法: WS/T 246—2005[S]. 北京: 人民卫生出版社, 2005: 1-10.
|
[9] |
SADAFI A, BORDUKOVA M, MAKHRO A, et al. RedTell: an AI tool for interpretable analysis of red blood cell morphology[J]. Front Physiol, 2023, 14: 1058720. doi: 10.3389/fphys.2023.1058720
|
[10] |
CHEN S Y, ZHAO M Z, WU G A, et al. Recent advances in morphological cell image analysis[J]. Comput Math Methods Med, 2012, 2012: 1-10.
|
[11] |
BRUEGEL M G T, FENG B, et al. Multi centre evaluation of the sensitivity and specificity of the cobas m 511 integrated hematology analyzer[J]. ISLH Abstr Proc, 2017, 39(Suppl S2): 21.
|
[12] |
LIU J, YUAN R Z, LI Y H, et al. A deep learning method and device for bone marrow imaging cell detection[J]. Ann Transl Med, 2022, 10(4): 208. doi: 10.21037/atm-22-486
|
[13] |
宋蓓, 张国军, 李芬芬, 等. 全自动数字细胞形态学分析系统Cella VisionTM DM96在外周血白细胞分类的临床应用评价[J]. 检验医学与临床, 2015, 12(4): 481-483. doi: 10.3969/j.issn.1672-9455.2015.04.21
|
[14] |
刘贵建, 庞博. 应促进和拓展人工智能辅助血细胞形态学检查的临床应用[J]. 中华检验医学杂志, 2023, 46(3): 231-237.
|
[15] |
张亮, 吴振安, 付慧哲. 全自动血细胞分析仪白细胞分类计数与手工分类计数结果一致性的比较分析[J]. 中国临床医生杂志, 2016, 44(4): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYS201604035.htm
|
[16] |
唐玉凤, 陈吉祥, 陈勋, 等. 全自动血细胞形态学识别系统在恶性血液系统疾病外周血涂片分析中的应用评价[J]. 检验医学与临床, 2016, 13(15): 2116-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-JYYL201615016.htm
|
[17] |
杨迪, 张俊, 韦俊杰, 等. CellaVision自动化血细胞数字图像分析系统的研究现状[J]. 实用临床医药杂志, 2020, 24(12): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL202012037.htm
|