WANG Mengran, YOU Xiaochen, XU Xingli, DAI Hongyan, GUAN Jun. Advances for ferroptosis in treating myocardial ischemia reperfusion injury[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 123-128, 133. DOI: 10.7619/jcmp.20240372
Citation: WANG Mengran, YOU Xiaochen, XU Xingli, DAI Hongyan, GUAN Jun. Advances for ferroptosis in treating myocardial ischemia reperfusion injury[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 123-128, 133. DOI: 10.7619/jcmp.20240372

Advances for ferroptosis in treating myocardial ischemia reperfusion injury

More Information
  • Received Date: January 20, 2024
  • Revised Date: March 20, 2024
  • Available Online: May 14, 2024
  • Ferroptosis, a new form of programmed cell death marked by iron-dependent phospholipid peroxidation, is regulated by complex cellular metabolic pathways, including iron metabolism, lipid metabolism, and oxidation-reduction system, is associated with many organ injuries and degeneration, and has great potential in the treatment of ischemic diseases and lipid peroxide-related degenerative diseases. Myocardial ischemia reperfusion injury (MIRI) is the most common cause of death in patients with acute myocardial infarction after revascularization therapy. Recent studies have shown that ferroptosis is intimately related to the pathological process of MIRI. Ferroptosis is associated with MIRI through oxidative stress, iron metabolism, lipid metabolism, endoplasmic reticulum stress and inflammatory response. Intervention of ferroptosis during reperfusion can effectively improve cardiac function and reduce myocardial infarct size. In this paper, the research progress was explored between ferroptosis and MIRI, and the specific role of ferroptosis in MIRI was discussed.

  • [1]
    PREM P N, SIVAKUMAR B, BOOVARAHAN S R, et al. Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-a systematic review[J]. Phytomedicine, 2022, 101: 154123. doi: 10.1016/j.phymed.2022.154123
    [2]
    ZHAO W K, ZHOU Y, XU T T, et al. Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021, 2021: 9929687.
    [3]
    YANG X, HUANG T Y, CHEN Y H, et al. Deoxynivalenol induces testicular ferroptosis by regulating the Nrf2/System Xc-/GPX4 axis[J]. Food Chem Toxicol, 2023, 175: 113730. doi: 10.1016/j.fct.2023.113730
    [4]
    CUI Y, ZHANG Z L, ZHOU X, et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression[J]. J Neuroinflammation, 2021, 18(1): 249. doi: 10.1186/s12974-021-02231-x
    [5]
    MA S X, SUN L Y, WU W H, et al. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death[J]. Front Physiol, 2020, 11: 551318. doi: 10.3389/fphys.2020.551318
    [6]
    XUE Q, YAN D, CHEN X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023, 19(7): 1982-1996. doi: 10.1080/15548627.2023.2165323
    [7]
    LI W T, LIANG L, LIU S Y, et al. FSP1: a key regulator of ferroptosis[J]. Trends Mol Med, 2023, 29(9): 753-764. doi: 10.1016/j.molmed.2023.05.013
    [8]
    MAO C, LIU X G, ZHANG Y L, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590. doi: 10.1038/s41586-021-03539-7
    [9]
    HU Q, WEI W H, WU D Q, et al. Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis[J]. Front Cell Dev Biol, 2022, 10: 810327. doi: 10.3389/fcell.2022.810327
    [10]
    CHEN Y F, LI X T, WANG S Y, et al. Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases[J]. Nutrients, 2023, 15(3): 591. doi: 10.3390/nu15030591
    [11]
    TIAN H, XIONG Y H, ZHANG Y, et al. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis[J]. Cell Stress Chaperones, 2021, 27(2): 149-164.
    [12]
    WU H, LIU Q, SHAN X Y, et al. ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4[J]. Autophagy, 2023, 19(7): 2062-2077. doi: 10.1080/15548627.2023.2170960
    [13]
    FANG Y Y, CHEN X C, TAN Q Y, et al. Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action[J]. ACS Cent Sci, 2021, 7(6): 980-989. doi: 10.1021/acscentsci.0c01592
    [14]
    LIANG D G, FENG Y, ZANDKARIMI F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones[J]. Cell, 2023, 186(13): 2748-2764, e22. doi: 10.1016/j.cell.2023.05.003
    [15]
    JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8
    [16]
    LIU J, KANG R, TANG D L. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2022, 289(22): 7038-7050. doi: 10.1111/febs.16059
    [17]
    DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98. doi: 10.1038/nchembio.2239
    [18]
    TANG D L, KROEMER G. Peroxisome: the new player in ferroptosis[J]. Signal Transduct Target Ther, 2020, 5(1): 273. doi: 10.1038/s41392-020-00404-3
    [19]
    刘丹勇, 夏正远, 韩荣辉, 等. 心肌缺血再灌注损伤机制研究的回顾与展望[J]. 中国动脉硬化杂志, 2020, 28(12): 1013-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-KDYZ202012002.htm
    [20]
    RODRIGO R, GONZÁLEZ-MONTERO J, SOTOMAYOR C G. Novel combined antioxidant strategy against hypertension, acute myocardial infarction and postoperative atrial fibrillation[J]. Biomedicines, 2021, 9(6): 620. doi: 10.3390/biomedicines9060620
    [21]
    ZINDEL J, KUBES P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation[J]. Annu Rev Pathol, 2020, 15: 493-518. doi: 10.1146/annurev-pathmechdis-012419-032847
    [22]
    WANG J, LIU Y, LIU Y, et al. Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury[J]. J Control Release, 2023, 353: 563-590. doi: 10.1016/j.jconrel.2022.11.057
    [23]
    HEUSCH G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17(12): 773-789. doi: 10.1038/s41569-020-0403-y
    [24]
    IBÁÑEZ B, HEUSCH G, OVIZE M, et al. Evolving therapies for myocardial ischemia/reperfusion injury[J]. J Am Coll Cardiol, 2015, 65(14): 1454-1471. doi: 10.1016/j.jacc.2015.02.032
    [25]
    SPARVERO L J, TIAN H, AMOSCATO A A, et al. Direct mapping of phospholipid ferroptotic death signals in cells and tissues by gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS)[J]. Angew Chem Int Ed, 2021, 60(21): 11784-11788. doi: 10.1002/anie.202102001
    [26]
    TANG L J, LUO X J, TU H, et al. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2): 401-410. doi: 10.1007/s00210-020-01932-z
    [27]
    YAN H F, ZOU T, TUO Q Z, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. doi: 10.1038/s41392-020-00428-9
    [28]
    LV Z Q, WANG F E, ZHANG X F, et al. Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 pathway[J]. Shock, 2021, 56(3): 440-449. doi: 10.1097/SHK.0000000000001751
    [29]
    KWON M Y, PARK E, LEE S J, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death[J]. Oncotarget, 2015, 6(27): 24393-24403. doi: 10.18632/oncotarget.5162
    [30]
    FAN Z Y, CAI L L, WANG S N, et al. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis[J]. Front Pharmacol, 2021, 12: 628988. doi: 10.3389/fphar.2021.628988
    [31]
    LI W Y, LI W, WANG Y, et al. Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury[J]. Cell Death Discov, 2021, 7(1): 267. doi: 10.1038/s41420-021-00656-0
    [32]
    LEI D Y, LI B, ISA Z, et al. Hypoxia-elicited cardiac microvascular endothelial cell-derived exosomal miR-210-3p alleviate hypoxia/reoxygenation-induced myocardial cell injury through inhibiting transferrin receptor 1-mediated ferroptosis[J]. Tissue Cell, 2022, 79: 101956. doi: 10.1016/j.tice.2022.101956
    [33]
    TANG L J, ZHOU Y J, XIONG X M, et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion[J]. Free Radic Biol Med, 2021, 162: 339-352. doi: 10.1016/j.freeradbiomed.2020.10.307
    [34]
    LAKHAL-LITTLETON S, WOLNA M, CHUNG Y J, et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis[J]. Elife, 2016, 5: e19804. doi: 10.7554/eLife.19804
    [35]
    QIU M L, YAN W, LIU M M. YAP facilitates NEDD4L-mediated ubiquitination and degradation of ACSL4 to alleviate ferroptosis in myocardial ischemia-reperfusion injury[J]. Can J Cardiol, 2023, 39(11): 1712-1727. doi: 10.1016/j.cjca.2023.07.030
    [36]
    CAI W B, LIU L, SHI X L, et al. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis[J]. Circulation, 2023, 147(19): 1444-1460. doi: 10.1161/CIRCULATIONAHA.122.060257
    [37]
    LEE Y S, LEE D H, CHOUDRY H A, et al. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis[J]. Mol Cancer Res, 2018, 16(7): 1073-1076. doi: 10.1158/1541-7786.MCR-18-0055
    [38]
    LI W Y, LI W, LENG Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress[J]. DNA Cell Biol, 2020, 39(2): 210-225. doi: 10.1089/dna.2019.5097
    [39]
    ZHOU Y Q, ZHOU H X, HUA L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radic Biol Med, 2021, 171: 55-68. doi: 10.1016/j.freeradbiomed.2021.05.009
    [40]
    ZHAO K, CHEN X S, BIAN Y J, et al. Broadening horizons: The role of ferroptosis in myocardial ischemia-reperfusion injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(10): 2269-2286. doi: 10.1007/s00210-023-02506-5
    [41]
    XU J F, ZHANG M H, LIU F, et al. Mesenchymal stem cells alleviate post-resuscitation cardiac and cerebral injuries by inhibiting cell pyroptosis and ferroptosis in a swine model of cardiac arrest[J]. Front Pharmacol, 2021, 12: 793829. doi: 10.3389/fphar.2021.793829
    [42]
    YAN N, XU Z P, QU C H, et al. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J]. Int Immunopharmacol, 2021, 98: 107844. doi: 10.1016/j.intimp.2021.107844
  • Related Articles

    [1]WANG Yulin, YANG Dandan, LI Wenwen, LYU Xiaojun, ZHANG Xiaoqian. Bibliometrics-based analysis of research hotspots and trends in microbial-gut-brain axis[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 43-49. DOI: 10.7619/jcmp.20245847
    [2]ZHU Yongmei, DU Lin, WANG Dan. Relationships of urinary liver-type fatty acid-binding protein and serum galectin-3 with early renal dysfunction in gout patients[J]. Journal of Clinical Medicine in Practice, 2024, 28(18): 76-80. DOI: 10.7619/jcmp.20241618
    [3]XU Manling, ZHU Jingbo, YU Kaiwen, CHEN Ling, FAN Huaying, FAN Qingtao, WANG Qiuping, LU Yan. Correlations of serum Apelin-13 and fatty acid binding protein 4 levels with postmenopausal osteoporosis[J]. Journal of Clinical Medicine in Practice, 2024, 28(11): 73-78, 83. DOI: 10.7619/jcmp.20240004
    [4]LIN Li, GU Cuihong, WANG Shuo, HUANG Shuyi, WANG Lihong, ZHANG Zhihua. Roles of short-chain fatty acid in antibiotic-associated diarrhea and its mechanism[J]. Journal of Clinical Medicine in Practice, 2023, 27(19): 61-66. DOI: 10.7619/jcmp.20232145
    [5]DAI Min, YANG Zichang, HU Ruilin, LI Qianqian, YI Jianmin, YU Qi. Values of brain fatty-type acid binding protein and kallikrein-6 in peripheral blood in predicting postoperative cognitive dysfunction of senile patients with hip replacement[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 44-49. DOI: 10.7619/jcmp.20230999
    [6]SHAO Huijuan, ZHENG Xiaofeng, HUANG Jun, MA Xuefeng, YU Xiaohui, ZHANG Jiucong. Research progress on roles of bile acids and its receptors in pathogenesis of non-alcoholic fatty liver disease and pharmacological treatment[J]. Journal of Clinical Medicine in Practice, 2023, 27(9): 143-148. DOI: 10.7619/jcmp.20230573
    [7]GAO Jie, YI Wei, LYU Shanshan, ZHANG Ting, ZHAO Rong. Diagnostic value of combined detection of serum heart-typefatty acid binding protein as well as non-esterified fatty acid for postoperative myocardial injury after percutaneous coronary intervention in elderly patients with coronary heart disease[J]. Journal of Clinical Medicine in Practice, 2021, 25(21): 28-32. DOI: 10.7619/jcmp.20212194
    [8]YU Miao, ZHANG Li, QIN Bing, HU Daojun. Relationship between serum free fatty acids level and insulin resistance in patients with type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2018, (7): 120-122. DOI: 10.7619/jcmp.201807034
    [9]ZHU Rongfeng, CHEN Suhong, GU Bin, HUANG Shengli. Relevance exploration of blood free fatty acid, uric acid and Testosterone with C peptide in male patients with incipient type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2014, (15): 8-10. DOI: 10.7619/jcmp.201415003
    [10]DING Ya-ping, XU Qin, WANG Jian-hua, SHEN Li-zong, ZHAO Yi, WANG Ling, WU Wen-xi. THE EFFECT OF TOTAL PARENTERAL NUTRITION SUPPLEMENTED WITH SHORT-CHAIN FATTYACIDS OF THE PROLIFERATION OF COLON MUCOSAL CELLS IN RATS WITH POSTOPERATIVE CHEMOTHERAPY[J]. Journal of Clinical Medicine in Practice, 2006, (9): 38-41. DOI: 10.3969/j.issn.1672-2353.2006.09.012
  • Cited by

    Periodical cited type(4)

    1. 殷浩,余利军,方婷婷. 舒筋壮骨汤结合经皮椎体成形术治疗骨质疏松压缩性脊柱骨折对患者腰椎功能和骨代谢水平的影响. 中国中西医结合外科杂志. 2023(01): 47-51 .
    2. 毕雪洁,周刘德. 椎体成形术与椎体后凸成形术对骨质疏松性椎体压缩性骨折患者骨代谢及腰椎功能的影响比较. 黑龙江医学. 2022(13): 1557-1559 .
    3. 黄松,陈敬有,魏优秀,周伟. 矿化胶原改性骨水泥在骨质疏松性椎体压缩骨折经皮椎体成形术中的临床应用. 创伤外科杂志. 2021(05): 350-354 .
    4. 王强,张骏,王天,刘万舜,谭章勇. 经皮椎体成形术治疗骨质疏松性椎体压缩骨折的临床疗效及术后邻近椎体骨折的危险因素分析. 现代生物医学进展. 2021(21): 4095-4099 .

    Other cited types(0)

Catalog

    Article views (207) PDF downloads (29) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return