Citation: | LI Wei, LIU Ying, TIAN Weiping, LIU Qiyan. Construction and validation of a risk prediction model for device-related pressure injuries in critically ill patients[J]. Journal of Clinical Medicine in Practice, 2024, 28(24): 15-19, 25. DOI: 10.7619/jcmp.20243040 |
To explore the influencing factors of device-related pressure injuries (DRPI) in critically ill patients, construct a risk prediction model, and validate its effectiveness.
A retrospective analysis was conducted on the clinical data of 136 critically ill patients. Based on the occurrence of DRPIs, the patients were divided into occurrence group (32 patients) and non-occurrence group (104 patients). Univariate analysis and binary Logistic regression analysis were used to investigate the influencing factors of DRPIs, and a binary Logistic regression model was constructed. The Hosmer-Lemeshow test was used to assess the goodness of fit of the model, and the area (AUC) under the receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of the model.Additionally, the Bootstrap method was employed for internal validation of the model.
Univariate analysis revealed statistically significant differences between the two groups in terms of age, diabetes, ICU stay duration, duration of non-invasive ventilation mask use, Acute Physiology and Chronic Health Evaluation Ⅱ (APACHE Ⅱ) score, Braden scale score, use of vasoactive drugs, prone position ventilation, hemoglobin levels, and lactate levels (P < 0.05). Binary Logistic regression analysis indicated that age, diabetes, ICU stay duration, APACHE Ⅱ score, duration of non-invasive ventilation mask use, use of vasoactive drugs, prone position ventilation, lactate levels, Braden scale score, and hemoglobin levels were independent influencing factors for DRPIs in critically ill patients (P < 0.05). A binary Logistic regression model for predicting the risk of DRPIs in critically ill patients was constructed based on these independent factors. The overall prediction accuracy of the model was 99.26%. The Hosmer-Lemeshow goodness-of-fit test showed that the model had good fitness (χ2 < 0.001, P>0.999). Internal validation using the Bootstrap method and ROC curve analysis showed that the AUC of the model for predicting DRPIs in critically ill patientswas 0.952, with a sensitivity of 87.5% and a specificity of 93.3%.
The risk prediction model for DRPIs in critically ill patients constructed in this study demonstrates good stability and predictive performance. It can assist clinical healthcare professionals in screening high-risk patients and formulating personalized intervention plans.
[1] |
冯维姣, 俞惠, 孟德芳, 等. 三甲医院内科护士预防医疗器械相关性压力性损伤知信行现状调查及影响因素分析[J]. 中国医药导报, 2021, 18(32): 46-49.
|
[2] |
邹凤娇, 赖巧蓉, 杜新香. 延续性护理对恶性肿瘤患者住院护理中压力性损伤发生的影响研究[J]. 国际感染病学: 电子版, 2020, 9(1): 225-226.
|
[3] |
项丽君, 王园, 罗彦嗣, 等. 成人气管切开相关压力性损伤预防的最佳证据总结[J]. 中华护理教育, 2023, 20(2): 229-236.
|
[4] |
杨龙飞, 宋冰, 倪翠萍, 等. 2019版《压力性损伤的预防和治疗: 临床实践指南》更新解读[J]. 中国护理管理, 2020, 20(12): 1849-1854.
|
[5] |
秦光雅, 乔远静, 李丹丹, 等. NICU医疗器械相关压力性损伤的现状及干预措施的研究进展[J]. 护士进修杂志, 2023, 38(3): 224-228.
|
[6] |
钱淑媛, 李晓青, 王晓燕, 等. 重症成人患者医疗器械相关性压力性损伤的研究进展[J]. 中国护理管理, 2022, 22(9): 1425-1428.
|
[7] |
乔彩虹, 杨辉, 曹慧丽. ICU医疗器械相关性压力性损伤的风险评估及护理干预研究进展[J]. 护理研究, 2021, 35(18): 3308-3311.
|
[8] |
王娜, 林元婷, 熊尹诗, 等. ICU患者医疗器械相关压力性损伤预防的证据总结[J]. 中国实用护理杂志, 2022, 38(13): 992-997.
|
[9] |
陈丽娟, 孙林利, 刘丽红, 等. 2019版《压疮/压力性损伤的预防和治疗: 临床实践指南》解读[J]. 护理学杂志, 2020, 35(13): 41-43, 51.
|
[10] |
陈丹丹, 庄若, 周洁玉, 等. 新生儿无创通气设备相关医疗器械相关压力性损伤的研究进展[J]. 实用医院临床杂志, 2021, 18(6): 229-233.
|
[11] |
范小玉, 李先辉, 李亚敏. ICU护士对医疗器械相关压力性损伤认知的研究进展[J]. 职业与健康, 2022, 38(13): 1869-1872.
|
[12] |
乔祎, 奚蓓华, 查庆华. 造口门诊医疗器械相关性压力性损伤的现状调查及对策[J]. 蚌埠医学院学报, 2021, 46(12): 1788-1791.
|
[13] |
王楠, 段颖杰. 重症患儿医疗器械相关压力性损伤发生因素分析[J]. 北京医学, 2021, 43(4): 370-372.
|
[14] |
董正惠, 祁进芳, 李振刚, 等. ICU患者医疗器械相关性压力性损伤发生特征及影响因素分析[J]. 中国医药导报, 2023, 20(2): 109-113.
|
[15] |
常丽萍, 佟金谕, 郭婷, 等. 住院病人医院获得性压力性损伤的原因分析[J]. 护理研究, 2022, 36(23): 4317-4320.
|
[16] |
MUNRO C L, LIANG Z, ELÍAS M N, et al. Sleep and activity patterns are altered during early critical illness in mechanically ventilated adults[J]. Dimens Crit Care Nurs, 2021, 40(1): 29-35.
|
[17] |
THOMAS A L, GRAHAM K, DAVILA S, et al. Using a learning system approach to improve safety for prone-position ventilation patients[J]. J Patient Saf, 2023, 19(3): 180-184.
|
[18] |
吴光英, 陈劼. 中文版Braden QD量表在预测NICU患儿压力性损伤中的应用研究[J]. 护士进修杂志, 2021, 36(7): 596-599, 603.
|
[19] |
庄秋枫, 肖世极, 周秀花, 等. 重症监护病房患者院内获得压力性损伤的危险因素分析[J]. 护理学杂志, 2021, 36(3): 53-56.
|
[20] |
潘有蓉, 王水, 张倩. 基于Nomogram模型建立乳腺癌根治术病人术中压力性损伤风险模型及护理策略[J]. 护理研究, 2022, 36(24): 4351-4357.
|