Citation: | ZHANG Jingjing, YUAN Chenchen, LU Guotao, XIAO Weiming, GONG Weijuan, FENG Xuebing. Impact of autoimmune diseases on risk of pancreatic endocrine and exocrine diseases: a prospective cohort study based on the UK Biobank[J]. Journal of Clinical Medicine in Practice, 2025, 29(7): 1-7, 12. DOI: 10.7619/jcmp.20245503 |
To analyze the correlations of autoimmune diseases (AIDs) with the risk of developing pancreatic endocrine and exocrine diseases.
A total of 451, 497 participants from the UK Biobank were recruited, with the primary outcomes being pancreatic endocrine and exocrine diseases. International Classification of Diseases 9/10 (ICD9/10) codes were used to define each AIDs, the pancreatic endocrine and exocrine diseases. Multivariable Cox proportional hazards models were employed to assess the relationships between AIDs and pancreatic endocrine and exocrine diseases, with adjustments for age, gender, ethnicity, Townsend deprivation index, smoking, alcohol consumption, body mass index, waist circumference, hip circumference, hypertension, dyslipidemia, and gallstones.
A total of 415, 497 participants were included, among which 37, 482 developed pancreas-related diseases during follow-up. Among patients with AIDs, the proportions of those with pancreatic exocrine and endocrine diseases were significantly increased (P < 0.05). Rheumatoid arthritis [HR(95%CI): 1.438(1.161 to 1.781)], ankylosing spondylitis [HR(95%CI): 1.675(1.009 to 2.780)], ulcerative colitis [HR(95%CI): 1.335(1.037 to 1.719)], and Crohn's disease [HR(95%CI): 1.530(1.154 to 2.028)] were all associated with an increased risk of developing pancreatic exocrine diseases (all P < 0.05); additionally, rheumatoid arthritis [HR(95%CI): 1.119(1.004 to 1.248)], ulcerative colitis [HR(95%CI): 1.324(1.175 to 1.491)], systemic sclerosis [HR(95%CI): 2.08(1.355 to 3.191)], and Crohn's disease[HR(95%CI): 1.394(1.197 to 1.624)] were also associated with an increased risk of developing pancreatic endocrine diseases (all P < 0.05).
Overall AIDs and some specific AIDs are associated with an increased risk of developing pancreatic endocrine and exocrine diseases, and early prevention of pancreatic diseases in patients with AIDs should be emphasized in clinical practice.
[1] |
张佳旭, 杨婷, 李燃. 中老年重症急性胰腺炎患者住院期间死亡预测模型的构建与验证[J]. 实用临床医药杂志, 2024, 28(17): 51-55. doi: 10.7619/jcmp.20241933
|
[2] |
HOQUE R, MALIK A F, GORELICK F, et al. Sterile inflammatory response in acute pancreatitis[J]. Pancreas, 2012, 41(3): 353-357. doi: 10.1097/MPA.0b013e3182321500
|
[3] |
WATANABE T, KUDO M, STROBER W. Immunopathogenesis of pancreatitis[J]. Mucosal Immunol, 2016, 10(2): 283-298.
|
[4] |
GUKOVSKY I, LI N, TODORIC J, et al. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer[J]. Gastroenterology, 2013, 144(6): 1199-1209. e4. doi: 10.1053/j.gastro.2013.02.007
|
[5] |
HAYTER S M, COOK M C. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease[J]. Autoimmun Rev, 2012, 11(10): 754-765. doi: 10.1016/j.autrev.2012.02.001
|
[6] |
XIANG Y, ZHANG M X, JIANG D, et al. The role of inflammation in autoimmune disease: a therapeutic target[J]. Front Immunol, 2023, 14: 1267091. doi: 10.3389/fimmu.2023.1267091
|
[7] |
GOBELET C, GERSTER J C, RAPPOPORT G, et al. A controlled study of the exocrine pancreatic function in Sj?gren's syndrome and rheumatoid arthritis[J]. Clin Rheumatol, 1983, 2(2): 139-143. doi: 10.1007/BF02032170
|
[8] |
TÉL B, STUBNYA B, GEDE N, et al. Inflammatory bowel diseases elevate the risk of developing acute pancreatitis: a meta-analysis[J]. Pancreas, 2020, 49(9): 1174-1181. doi: 10.1097/MPA.0000000000001650
|
[9] |
DESSEIN P H, JOFFE B I. Insulin resistance and impaired beta cell function in rheumatoid arthritis[J]. Arthritis Rheum, 2006, 54(9): 2765-2775. doi: 10.1002/art.22053
|
[10] |
GARCÍA-CARRASCO M, MENDOZA-PINTO C, MUNGUÍA-REALPOZO P, et al. Insulin resistance and diabetes mellitus in patients with systemic lupus erythematosus[J]. Endocr Metab Immune Disord Drug Targets, 2023, 23(4): 503-514. doi: 10.2174/1871530322666220908154253
|
[11] |
DONG X W, ZHU Q T, YUAN C C, et al. Associations of intrapancreatic fat deposition with incident diseases of the exocrine and endocrine pancreas: a UK biobank prospective cohort study[J]. Am J Gastroenterol, 2024, 119(6): 1158-1166. doi: 10.14309/ajg.0000000000002792
|
[12] |
GUKOVSKAYA A S, GUKOVSKY I, ALGVL H, et al. Autophagy, inflammation, and immune dysfunction in the pathogenesis of pancreatitis[J]. Gastroenterology, 2017, 153(5): 1212-1226. doi: 10.1053/j.gastro.2017.08.071
|
[13] |
REN W X, ZHAO L, SUN Y, et al. HMGB1 and toll-like receptors: potential therapeutic targets in autoimmune diseases[J]. Mol Med, 2023, 29(1): 117. doi: 10.1186/s10020-023-00717-3
|
[14] |
CHANG C C, CHIOU C S, LIN H L, et al. Increased risk of acute pancreatitis in patients with rheumatoid arthritis: a population-based cohort study[J]. PLoS One, 2015, 10(8): e0135187. doi: 10.1371/journal.pone.0135187
|
[15] |
ALKHAYYAT M, ABOU SALEH M, GREWAL M K, et al. Pancreatic manifestations in rheumatoid arthritis: a national population-based study[J]. Rheumatology: Oxford, 2021, 60(5): 2366-2374. doi: 10.1093/rheumatology/keaa616
|
[16] |
MONTENEGRO M L, CORRAL J E, LUKENS F J, et al. Pancreatic disorders in patients with inflammatory bowel disease[J]. Dig Dis Sci, 2022, 67(2): 423-436. doi: 10.1007/s10620-021-06899-2
|
[17] |
MASSIRONI S, FANETTI I, VIGANÒ C, et al. Systematic review-pancreatic involvement in inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2022, 55(12): 1478-1491. doi: 10.1111/apt.16949
|
[18] |
PEDERSEN J E, ÄNGQUIST L H, JENSEN C B, et al. Risk of pancreatitis in patients with inflammatory bowel disease - a meta-analysis[J]. Dan Med J, 2020, 67(3): A08190427.
|
[19] |
李金强, 惠亮亮. 急性胰腺炎患者肠道菌群的研究进展[J]. 中国微生态学杂志, 2024, 36(12): 1480-1484.
|
[20] |
NAVARRO J F, MORA C. Role of inflammation in diabetic complications[J]. Nephrol Dial Transplant, 2005, 20(12): 2601-2604. doi: 10.1093/ndt/gfi155
|
[21] |
ROHM T V, MEIER D T, OLEFSKY J M, et al. Inflammation in obesity, diabetes, and related disorders[J]. Immunity, 2022, 55(1): 31-55. doi: 10.1016/j.immuni.2021.12.013
|
[22] |
NIE Y Q, ZHOU H T, WANG J, et al. Association between systemic immune-inflammation index and diabetes: a population-based study from the NHANES[J]. Front Endocrinol (Lausanne), 2023, 14: 1245199. doi: 10.3389/fendo.2023.1245199
|
[23] |
WU D, LAN Y L, CHEN S H, et al. Combined effect of adiposity and elevated inflammation on incident type 2 diabetes: a prospective cohort study[J]. Cardiovasc Diabetol, 2023, 22(1): 351. doi: 10.1186/s12933-023-02067-0
|
[24] |
MA X L, CHEN Z J, WANG L, et al. The pathogenesis of diabetes mellitus by oxidative stress and inflammation: its inhibition by berberine[J]. Front Pharmacol, 2018, 9: 782. doi: 10.3389/fphar.2018.00782
|
[25] |
DUBREUIL M, RHO Y H, MAN A D, et al. Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: a UK population-based cohort study[J]. Rheumatology (Oxford), 2014, 53(2): 346-352. doi: 10.1093/rheumatology/ket343
|
[26] |
TIAN Z X, MCLAUGHLIN J, VERMA A, et al. The relationship between rheumatoid arthritis and diabetes mellitus: a systematic review and meta-analysis[J]. Cardiovasc Endocrinol Metab, 2021, 10(2): 125-131. doi: 10.1097/XCE.0000000000000244
|
[27] |
SANG M M, SUN Z L, WU T Z. Inflammatory bowel disease and diabetes: is there a link between them[J]. World J Diabetes, 2022, 13(2): 126-128. doi: 10.4239/wjd.v13.i2.126
|
[28] |
JESS T, JENSEN B W, ANDERSSON M, et al. Inflammatory bowel diseases increase risk of type 2 diabetes in a nationwide cohort study[J]. Clin Gastroenterol Hepatol, 2020, 18(4): 881-888. e1. doi: 10.1016/j.cgh.2019.07.052
|
[29] |
JASSER-NITSCHE H, BECHTOLD-DALLA POZZA S, BINDER E, et al. Comorbidity of inflammatory bowel disease in children and adolescents with type 1 diabetes[J]. Acta Paediatr, 2021, 110(4): 1353-1358. doi: 10.1111/apa.15643
|