Citation: | JIA Linlin, JIANG Yushu, ZHANG Mengge, MA Weifeng, ZHANG Tao, LI Wei. Research progress on pathogenesis of neuromyelitis optic spectrum diseases[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 132-138. DOI: 10.7619/jcmp.20215000 |
[1] |
FUJIHARA K. Neuromyelitis optica spectrum disorders: still evolving and broadening[J]. Curr Opin Neurol, 2019, 32(3): 385-394. doi: 10.1097/WCO.0000000000000694
|
[2] |
PAPP V, MAGYARI M, AKTAS O, et al. Worldwide incidence and prevalence of neuromyelitis optica: a systematic review[J]. Neurology, 2021, 96(2): 59-77.
|
[3] |
WINGERCHUK D M, BANWELL B, BENNETT J L, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders[J]. Neurology, 2015, 85(2): 177-189. doi: 10.1212/WNL.0000000000001729
|
[4] |
PAPADOPOULOS M C, VERKMAN A S. Aquaporin 4 and neuromyelitis optica[J]. Lancet Neurol, 2012, 11(6): 535-544. doi: 10.1016/S1474-4422(12)70133-3
|
[5] |
SAADOUN S, PAPADOPOULOS M C. Role of membrane complement regulators in neuromyelitis optica[J]. Mult Scler Houndmills Basingstoke Engl, 2015, 21(13): 1644-1654. doi: 10.1177/1352458515571446
|
[6] |
ROSITO S, NICCHIA G P, PALAZZO C, et al. Supramolecular aggregation of aquaporin-4 is different in muscle and brain: correlation with tissue susceptibility in neuromyelitis optica[J]. J Cell Mol Med, 2018, 22(2): 1236-1246.
|
[7] |
YAO X M, VERKMAN A S. Marked central nervous system pathology in CD59 knockout rats following passive transfer of Neuromyelitis optica immunoglobulin G[J]. Acta Neuropathol Commun, 2017, 5(1): 15. doi: 10.1186/s40478-017-0417-9
|
[8] |
PISANI F, SETTANNI P, ROSITO S, et al. Development of an aquaporin-4 orthogonal array of particle-based ELISA for neuromyelitis optica autoantibodies detection[J]. PLoS One, 2015, 10(11): e0143679. doi: 10.1371/journal.pone.0143679
|
[9] |
SOLTYS J, LIU Y T, RITCHIE A, et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica[J]. J Clin Investig, 2019, 129(5): 2000-2013. doi: 10.1172/JCI122942
|
[10] |
JARIUS S, ABOUL-ENEIN F, WATERS P, et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica[J]. Brain, 2008, 131(11): 3072-3080. doi: 10.1093/brain/awn240
|
[11] |
VALENTINO P, MARNETTO F, GRANIERI L, et al. Aquaporin-4 antibody titration in NMO patients treated with rituximab: a retrospective study[J]. Neurol Neuroimmunol Neuroinflamm, 2017, 4(2): e317. doi: 10.1212/NXI.0000000000000317
|
[12] |
LIU J, TAN G J, LI B, et al. Serum aquaporin 4-immunoglobulin G titer and neuromyelitis optica spectrum disorder activity and severity: a systematic review and meta-analysis[J]. Front Neurol, 2021, 12: 746959. doi: 10.3389/fneur.2021.746959
|
[13] |
BOOS L, CAMPBELL I L, AMES R, et al. Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis[J]. J Immunol, 2004, 173(7): 4708-4714. doi: 10.4049/jimmunol.173.7.4708
|
[14] |
PITTOCK S J, BERTHELE A, FUJIHARA K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder[J]. N Engl J Med, 2019, 381(7): 614-625. doi: 10.1056/NEJMoa1900866
|
[15] |
WINGERCHUK D M, FUJIHARA K, PALACE J, et al. Long-term safety and efficacy of eculizumab in aquaporin-4 IgG-positive NMOSD[J]. Ann Neurol, 2021, 89(6): 1088-1098. doi: 10.1002/ana.26049
|
[16] |
ZELEK W M, XIE L, MORGAN B P, et al. Compendium of current complement therapeutics[J]. Mol Immunol, 2019, 114: 341-352. doi: 10.1016/j.molimm.2019.07.030
|
[17] |
HÄUSSER-KINZEL S, WEBER M S. The role of B cells and antibodies in multiple sclerosis, neuromyelitis optica, and related disorders[J]. Front Immunol, 2019, 10: 201. doi: 10.3389/fimmu.2019.00201
|
[18] |
BARR T A, SHEN P, BROWN S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells[J]. J Exp Med, 2012, 209(5): 1001-1010. doi: 10.1084/jem.20111675
|
[19] |
KOWARIK M C, ASTLING D, GASPERI C, et al. CNS Aquaporin-4-specific B cells connect with multiple B-cell compartments in neuromyelitis optica spectrum disorder[J]. Ann Clin Transl Neurol, 2017, 4(6): 369-380. doi: 10.1002/acn3.418
|
[20] |
ODENDAHL M, MEI H, HOYER B F, et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response[J]. Blood, 2005, 105(4): 1614-1621. doi: 10.1182/blood-2004-07-2507
|
[21] |
MONTALBAN X, HAUSER S L, KAPPOS L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis[J]. N Engl J Med, 2017, 376(3): 209-220. doi: 10.1056/NEJMoa1606468
|
[22] |
CREE B A C, BENNETT J L, KIM H J, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial[J]. Lancet, 2019, 394(10206): 1352-1363. doi: 10.1016/S0140-6736(19)31817-3
|
[23] |
FUJIHARA K, BENNETT J L, DE SEZE J, et al. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology[J]. Neurol R Neuroimmunol Neuroinflammation, 2020, 7(5): e841. doi: 10.1212/NXI.0000000000000841
|
[24] |
CHIHARA N, ARANAMI T, SATO W, et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica[J]. PNAS, 2011, 108(9): 3701-3706. doi: 10.1073/pnas.1017385108
|
[25] |
LEHMANN-HORN K, KINZEL S, WEBER M S. Deciphering the role of B cells in multiple sclerosis-towards specific targeting of pathogenic function[J]. Int J Mol Sci, 2017, 18(10): 2048. doi: 10.3390/ijms18102048
|
[26] |
KANEKO K, SATO D K, NAKASHIMA I, et al. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications[J]. J Neurol Neurosurg Psychiatry, 2018, 89(9): 927-936. doi: 10.1136/jnnp-2018-317969
|
[27] |
QUAN C, YU H, QIAO J, et al. Impaired regulatory function and enhanced intrathecal activation of B cells in neuromyelitis optica: distinct from multiple sclerosis[J]. Mult Scler Houndmills Basingstoke Engl, 2013, 19(3): 289-298. doi: 10.1177/1352458512454771
|
[28] |
CHO E B, CHO H J, SEOK J M, et al. The IL-10-producing regulatory B cells (B10 cells) and regulatory T cell subsets in neuromyelitis optica spectrum disorder[J]. Neurol Sci, 2018, 39(3): 543-549. doi: 10.1007/s10072-018-3248-y
|
[29] |
KREUZALER M, RAUCH M, SALZER U, et al. Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors[J]. J Immunol, 2012, 188(1): 497-503. doi: 10.4049/jimmunol.1102321
|
[30] |
CARTER L M, ISENBERG D A, EHRENSTEIN M R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus[J]. Arthritis Rheum, 2013, 65(10): 2672-2679.
|
[31] |
NG L G, MACKAY C R, MACKAY F. The BAFF/APRIL system: life beyond B lymphocytes[J]. Mol Immunol, 2005, 42(7): 763-772. doi: 10.1016/j.molimm.2004.06.041
|
[32] |
ASAVAPANUMAS N, TRADTRANTIP L, VERKMAN A S. Targeting the complement system in neuromyelitis optica spectrum disorder[J]. Expert Opin Biol Ther, 2021, 21(8): 1073-1086. doi: 10.1080/14712598.2021.1884223
|
[33] |
BRADL M, MISU T, TAKAHASHI T, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo[J]. Ann Neurol, 2009, 66(5): 630-643. doi: 10.1002/ana.21837
|
[34] |
BARROS P O, CASSANO T, HYGINO J, et al. Prediction of disease severity in neuromyelitis optica by the levels of interleukin (IL)-6 produced during remission phase[J]. Clin Exp Immunol, 2015, 183(3): 480-489.
|
[35] |
SAGAN S A, ANDRÉS C H, SPENCER C M, et al. Induction of paralysis and visual system injury in mice by T cells specific for neuromyelitis optica autoantigen aquaporin-4[J]. J Vis Exp, 2017, 126: 56185.
|
[36] |
BRILL L, LAVON I, VAKNIN-DEMBINSKY A. Foxp3+ regulatory T cells expression in neuromyelitis optica spectrum disorders[J]. Mult Scler Relat Disord, 2019, 30: 114-118. doi: 10.1016/j.msard.2019.01.047
|
[37] |
BIRZELE F, FAUTI T, STAHL H, et al. Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human[J]. Nucleic Acids Res, 2011, 39(18): 7946-7960. doi: 10.1093/nar/gkr444
|
[38] |
MONTEIRO C, FERNANDES G, KASAHARA T M, et al. The expansion of circulating IL-6 and IL-17-secreting follicular helper T cells is associated with neurological disabilities in neuromyelitis optica spectrum disorders[J]. J Neuroimmunol, 2019, 330: 12-18. doi: 10.1016/j.jneuroim.2019.01.015
|
[39] |
FAN X L, JIANG Y F, HAN J M, et al. Circulating memory T follicular helper cells in patients with neuromyelitis optica/neuromyelitis optica spectrum disorders[J]. Mediat Inflamm, 2016, 2016: 3678152.
|
[40] |
YANG H, LIU W, WU Y F, et al. Lymphocyte subsets are associated with disease status in neuromyelitis optica spectrum disorders[J]. Neuroimmunomodulation, 2021. [Published online ahead of print].
|
[41] |
RIEDEL J H, BECKER M, KOPP K, et al. IL-33-mediated expansion of type 2 innate lymphoid cells protects from progressive glomerulosclerosis[J]. J Am Soc Nephrol, 2017, 28(7): 2068-2080. doi: 10.1681/ASN.2016080877
|
[42] |
KONG Y, LI H D, WANG D, et al. Group 2 innate lymphoid cells suppress the pathology of neuromyelitis optica spectrum disorder[J]. FASEB J, 2021, 35(11): e21856.
|
[43] |
RUSSI A E, EBEL M E, YANG Y C, et al. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility[J]. PNAS, 2018, 115(7): E1520-E1529.
|
[44] |
WILSON R, MAKUCH M, KIENZLER A K, et al. Condition-dependent generation of aquaporin-4 antibodies from circulating B cells in neuromyelitis optica[J]. Brain, 2018, 141(4): 1063-1074. doi: 10.1093/brain/awy010
|
[45] |
ZHANG H, BENNETT J L, VERKMAN A S. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms[J]. Ann Neurol, 2011, 70(6): 943-954. doi: 10.1002/ana.22551
|
[46] |
UZAWA A, MORI M, ARAI K, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6[J]. Mult Scler Houndmills Basingstoke Engl, 2010, 16(12): 1443-1452. doi: 10.1177/1352458510379247
|
[47] |
ZHANG C, ZHANG M N, QIU W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial[J]. Lancet Neurol, 2020, 19(5): 391-401. doi: 10.1016/S1474-4422(20)30070-3
|
[48] |
TRABOULSEE A, GREENBERG B M, BENNETT J L, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial[J]. Lancet Neurol, 2020, 19(5): 402-412. doi: 10.1016/S1474-4422(20)30078-8
|
[49] |
JACOB A, SAADOUN S, KITLEY J, et al. Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence[J]. Mult Scler J, 2012, 18(12): 1801-1803. doi: 10.1177/1352458512443994
|
[50] |
BARROS P O, LINHARES U C, TEIXEIRA B, et al. High in vitro immune reactivity to Escherichia coli in neuromyelitis optica patients is correlated with both neurological disabilities and elevated plasma lipopolysaccharide levels[J]. Hum Immunol, 2013, 74(9): 1080-1087. doi: 10.1016/j.humimm.2013.06.016
|
[51] |
GONG J L, QIU W, ZENG Q, et al. Lack of short-chain fatty acids and overgrowth of opportunistic pathogens define dysbiosis of neuromyelitis optica spectrum disorders: a Chinese pilot study[J]. Mult Scler J, 2019, 25(9): 1316-1325. doi: 10.1177/1352458518790396
|
[52] |
IVANOV I I, ATARASHI K, MANEL N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3): 485-498. doi: 10.1016/j.cell.2009.09.033
|
[53] |
MICHEL V D, SPENCER C M, ULF S T, et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter[J]. Ann Neurol, 2012, 72(1): 53-64. doi: 10.1002/ana.23651
|
[54] |
CREE B A C, SPENCER C M, VARRIN-DOYER M, et al. Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens[J]. Ann Neurol, 2016, 80(3): 443-447. doi: 10.1002/ana.24718
|
[55] |
ADAMCZYK-SOWA M, MEDREK A, MADEJ P, et al. Does the gut microbiota influence immunity and inflammation in multiple sclerosis pathophysiology[J]. Dev Immunol, 2017, 2017: 7904821.
|
[56] |
WU Y F, CAI Y, LIU M Y, et al. The potential immunoregulatory roles of vitamin D in neuromyelitis optica spectrum disorder[J]. Mult Scler Relat Disord, 2020, 43: 102156. doi: 10.1016/j.msard.2020.102156
|
[57] |
VAHID D, KIANDOKHT K, BOVE R M, et al. Immunology of neuromyelitis optica during pregnancy[J]. Neurol R Neuroimmunol Neuroinflammation, 2016, 3(6): e288. doi: 10.1212/NXI.0000000000000288
|
[58] |
SAADOUN S, WATERS P, LEITE M I, et al. Neuromyelitis optica IgG causes placental inflammation and fetal death[J]. J Immunol, 2013, 191(6): 2999-3005. doi: 10.4049/jimmunol.1301483
|