LI Xiangying, GANG Qiaojian, MU Liyuan, SHENG Yingda, HA Xiaoqin. Research progress of umbilical cord mesenchymal stem cell-derived exosomes in treatment of tumor[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 108-112, 118. DOI: 10.7619/jcmp.20222117
Citation: LI Xiangying, GANG Qiaojian, MU Liyuan, SHENG Yingda, HA Xiaoqin. Research progress of umbilical cord mesenchymal stem cell-derived exosomes in treatment of tumor[J]. Journal of Clinical Medicine in Practice, 2022, 26(23): 108-112, 118. DOI: 10.7619/jcmp.20222117

Research progress of umbilical cord mesenchymal stem cell-derived exosomes in treatment of tumor

More Information
  • Received Date: July 10, 2022
  • Available Online: December 22, 2022
  • Umbilical cord mesenchymal stem cells are multidirectional stem cells from the umbilical cord that can inhibit tumor development through exosomes. Exosomes secreted by umbilical cord mesenchymal stem cells play an anti-tumor role by participating in immune response, inhibiting tumor cell proliferation, reducing angiogenesis and improving drug sensitivity. However, there are few studies on the application of exosomes secreted by umbilical cord mesenchymal stem cells in tumor therapy. The paper reviewed the mechanism of action and application prospect of these drugs in tumor therapy.

  • [1]
    SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. doi: 10.3322/caac.21708
    [2]
    ANSARI M A, THIRUVENGADAM M, VENKIDASAMY B, et al. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: current status and future perspectives[J]. Semin Cancer Biol, 2022.
    [3]
    AHANI-NAHAYATI M, NIAZI V, MORADI A, et al. Umbilical cord mesenchymal stem/stromal cells potential to treat organ disorders; an emerging strategy[J]. Curr Stem Cell Res Ther, 2022, 17(2): 126-146. doi: 10.2174/1574888X16666210907164046
    [4]
    GUO G, TAN Z, LIU Y, et al. The therapeutic potential of stem cell-derived exosomes in the ulcerative colitis and colorectal cancer[J]. Stem Cell Res Ther, 2022, 13(1): 138. doi: 10.1186/s13287-022-02811-5
    [5]
    HADE M D, SUIRE C N, SUO Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine[J]. Cells, 2021, 10(8).
    [6]
    YU D, LI Y, WANG M, et al. Exosomes as a new frontier of cancer liquid biopsy[J]. Mol Cancer, 2022, 21(1): 56. doi: 10.1186/s12943-022-01509-9
    [7]
    KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478).
    [8]
    杨丽娟, 张加苗, 张晶, 等. 外泌体在肿瘤中的作用及靶向治疗的研究进展[J]. 实用临床医药杂志, 2022, 26(8): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL202208027.htm
    [9]
    LEE J R, PARK B W, KIM J, et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair[J]. Sci Adv, 2020, 6(18): eaaz0952. doi: 10.1126/sciadv.aaz0952
    [10]
    ZHANG F, GUO J, ZHANG Z, et al. Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy[J]. Cancer Letters, 2022, 526: 29-40. doi: 10.1016/j.canlet.2021.11.015
    [11]
    ZHAO J, MA S, XU Y, et al. In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy[J]. Biomaterials, 2021, 268: 120542. doi: 10.1016/j.biomaterials.2020.120542
    [12]
    YUAN L, LIU Y, QU Y, et al. Exosomes derived from microRNA-148b-3p-overexpressing human umbilical cord mesenchymal stem cells restrain breast cancer progression[J]. Front Oncol, 2019, 9: 1076. doi: 10.3389/fonc.2019.01076
    [13]
    WANG S, LEI B, ZHANG E, et al. Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: from basic to clinics[J]. International Journal of Nanomedicine 2022, 17: 1757-1781. doi: 10.2147/IJN.S355366
    [14]
    REN G, ZHANG L, ZHAO X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide[J]. Cell Stem Cell, 2008, 2(2): 141-150. doi: 10.1016/j.stem.2007.11.014
    [15]
    ZHOU Y, DAY A, HAYKAL S, et al. Mesenchymal stromal cells augment CD4+ and CD8+ T-cell proliferation through a CCL2 pathway[J]. Cytotherapy, 2013, 15(10): 1195-1207. doi: 10.1016/j.jcyt.2013.05.009
    [16]
    LI Y, ZHAO W, WANG Y, et al. Extracellular vesicle-mediated crosstalk between pancreatic cancer and stromal cells in the tumor microenvironment[J]. Journal of Nanobiotechnology, 2022, 20 (1): 208. doi: 10.1186/s12951-022-01382-0
    [17]
    LI D, LIN F, LI G, et al. Exosomes derived from mesenchymal stem cells curbs the progression of clear cell renal cell carcinoma through T-cell immune response[J]. Cytotechnology, 2021, 73(4): 593-604. doi: 10.1007/s10616-021-00480-5
    [18]
    JIA Y, DING X, ZHOU L, et al. Mesenchymal stem cells-derived exosomal microRNA-139-5p restrains tumorigenesis in bladder cancer by targeting PRC1[J]. Oncogene, 2021, 40(2): 246-261. doi: 10.1038/s41388-020-01486-7
    [19]
    QIU L, WANG J, CHEN M, et al. Exosomal microRNA-146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2 mediated PI3K/Akt axis[J]. Int J Mol Med, 2020, 46(2): 609-620. doi: 10.3892/ijmm.2020.4634
    [20]
    LI X, LIU L L, YAO J L, et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Inhibit Endometrial Cancer Cell Proliferation and Migration through Delivery of Exogenous miR-302a[J]. Stem Cells International, 2019, 2019: 8108576.
    [21]
    HE Z, LI W, ZHENG T, et al. Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression[J]. Journal of experimental & clinical cancer research, 2020, 39(1): 140.
    [22]
    TODOROVA D, SIMONCINI S, LACROIX R, et al. Extracellular vesicles in angiogenesis[J]. Circ Res, 2017, 120(10): 1658-1673. doi: 10.1161/CIRCRESAHA.117.309681
    [23]
    PAKRAVAN K, BABASHAH S, SADEGHIZADEH M, et al. microRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells[J]. Cell Oncol, 2017, 40(5): 457-470. doi: 10.1007/s13402-017-0335-7
    [24]
    LEE J K, PARK S R, JUNG B K, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells[J]. PLoS One, 2013, 8(12): e84256. doi: 10.1371/journal.pone.0084256
    [25]
    ROSENBERGER L, EZQUER M, LILLO-VERA F, et al. Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma[J]. Sci Rep, 2019, 9(1): 663. doi: 10.1038/s41598-018-36855-6
    [26]
    LOU G, CHEN L, XIA C, et al. miR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 4. doi: 10.1186/s13046-019-1512-5
    [27]
    刘强, 王玉杰, 李前进, 等. 过表达miR-145的脐带间充质干细胞外泌体改善肾细胞癌细胞786-0对舒尼替尼的药物敏感性[J]. 现代肿瘤医学, 2022, 30(6): 959-966. doi: 10.3969/j.issn.1672-4992.2022.06.003
    [28]
    ZHAO L X, ZHANG K, SHEN B B, et al. Mesenchymal stem cell-derived exosomes for gastrointestinal cancer[J]. World J Gastrointest Oncol, 2021, 13(12): 1981-1996. doi: 10.4251/wjgo.v13.i12.1981
    [29]
    LIM W, KIM H S. Exosomes as therapeutic vehicles for cancer[J]. Tissue Eng Regen Med, 2019, 16(3): 213-223. doi: 10.1007/s13770-019-00190-2
    [30]
    TARASOV V V, SVISTUNOV A A, CHUBAREV V N, et al. Extracellular vesicles in cancer nanomedicine[J]. Semin Cancer Biol, 2021, 69: 212-225. doi: 10.1016/j.semcancer.2019.08.017
    [31]
    PALAZZOLO S, MEMEO L, HADLA M, et al. Cancer extracellular vesicles: next-generation diagnostic and drug delivery nanotools[J]. Cancers: Basel, 2020, 12(11).
    [32]
    AILUNO G, BALDASSARI S, LAI F, et al. Exosomes and extracellular vesicles as emerging theranostic platforms in cancer research[J]. Cells, 2020, 9(12).
    [33]
    PIRISINU M, PHAM T C, ZHANG D X, et al. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: recent advances, current obstacles, and challenges for clinical translation[J]. Semin Cancer Biol, 2022, 80: 340-355. doi: 10.1016/j.semcancer.2020.08.007
    [34]
    ZHU L, SUN H T, WANG S, et al. Isolation and characterization of exosomes for cancer research[J]. J Hematol Oncol, 2020, 13(1): 152. doi: 10.1186/s13045-020-00987-y
    [35]
    ZHOU J, TAN X, TAN Y, et al. Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review[J]. J Cancer, 2018, 9(17): 3129-3137. doi: 10.7150/jca.25376
    [36]
    WU Q, ZHOU L, LV D, et al. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression[J]. Journal of Hematology & Oncology, 2019, 12(1): 53.
    [37]
    MELZER C, REHN V, YANG Y, et al. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells[J]. Cancers, 2019, 11(6).
    [38]
    SHAO J, ZARO J, SHEN Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate[J]. Int J Nanomedicine, 2020, 15: 9355-9371. doi: 10.2147/IJN.S281890
    [39]
    SUN Z, ZHANG J, LI J, et al. Roles of mesenchymal stem cell-derived exosomes in cancer development and targeted therapy[J]. Stem Cells Int, 2021, 2021: 9962194.
    [40]
    WENG Z, ZHANG B, WU C, et al. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer[J]. J Hematol Oncol, 2021, 14(1): 136. doi: 10.1186/s13045-021-01141-y
    [41]
    李洪强. 利用CRISPR/Cas9技术构建永生化脐带间充质干细胞系及其MYC-AS1转基因工程化外泌体抑癌功能初探[D]. 扬州: 扬州大学, 2021.
    [42]
    XIE X, JI J, CHEN X, et al. Human umbilical cord mesenchymal stem cell-derived exosomes carrying hsa-miRNA-128-3p suppress pancreatic ductal cell carcinoma by inhibiting Galectin-3[J]. Clin Transl Oncol, 2022, 24(3): 517-531.
    [43]
    XIE H, WANG J. microRNA-320a-containing exosomes from human umbilical cord mesenchymal stem cells curtail proliferation and metastasis in lung cancer by binding to SOX4[J]. Journal of Receptors and Signal Transduction, 2022, 42(3): 268-278. doi: 10.1080/10799893.2021.1918166
    [44]
    LI T, WAN Y, SU Z, et al. Mesenchymal stem cell-derived exosomal microRNA-3940-5p inhibits colorectal cancer metastasis by targeting integrin α6[J]. Dig Dis Sci, 2021, 66(6): 1916-1927.
    [45]
    MA H, WENG F, WANG L, et al. Extracellular vesicle-mediated delivery of miR-127-3p inhibits the proliferation and invasion of choriocarcinoma cells by targeting ITGA6[J]. Exp Cell Res, 2022, 414(2): 113098.
  • Related Articles

    [1]ZHU Mingming, LI Zonghu, ZHENG Xianling, WANG Yingxia, ZHANG Shujie. Relationships of blood glucose fluctuation with serum Omentin-1 and oxidative stress factors in patients with type 2 diabetes mellitus[J]. Journal of Clinical Medicine in Practice, 2023, 27(20): 113-117. DOI: 10.7619/jcmp.20231747
    [2]JIANG Liyan, PAN Hongbo, CHEN Kun, XIA Li, MU Yujing. The serum levels of serum ferritin and vitamin D in diabetic peripheral neuropathy and their relationships with oxidative stress[J]. Journal of Clinical Medicine in Practice, 2023, 27(5): 110-113, 118. DOI: 10.7619/jcmp.20222301
    [3]LIU Huan, LIU Yongxia, LIU Yan, ZHAO Ni. Changes of physiological indexes and oxidative stress indexes in elderly patients with essential hypertension and their significance[J]. Journal of Clinical Medicine in Practice, 2020, 24(23): 88-91. DOI: 10.7619/jcmp.202023027
    [4]WANG Fang. Correlation between serum vitamin level, oxidative stress injury and preeclampsia in pregnant women[J]. Journal of Clinical Medicine in Practice, 2020, 24(15): 87-89. DOI: 10.7619/jcmp.202015024
    [5]ZHU Ting, DONG Lin, DENG Yuezhen. Effects of liraglutide on oxidative stress status in newly-diagnosed type 2 diabetes mellitus patients with obesity[J]. Journal of Clinical Medicine in Practice, 2018, (5): 29-31. DOI: 10.7619/jcmp.201805009
    [6]ZHANG Li, ZHANG Hengdong. Effects of calcium disodium and water-soluble vitamins on serum T lymphocytes and oxidative stress in patients with occupational lead poisoning[J]. Journal of Clinical Medicine in Practice, 2017, (15): 34-36,40. DOI: 10.7619/jcmp.201715009
    [7]LIU Anning, ZHANG Gaosheng, WANG Liang, HUANG Jing. Influence of lipoic acid injection on the oxidative stress state and local microcirculation of patients with diabetic foot[J]. Journal of Clinical Medicine in Practice, 2017, (1): 56-58. DOI: 10.7619/jcmp.201701016
    [8]GU Zhihong. Effect of intravenous immunoglobulin on inflammatory reaction and oxidative stress reaction of children with Kawasaki disease[J]. Journal of Clinical Medicine in Practice, 2016, (5): 103-106. DOI: 10.7619/jcmp.201605031
    [9]FENG Yamin, XU Jiarong, YOU Na, ZHENG Haining, ZHU Qun. Influence Of thioctic acid on oxidative stress and microalbuminuria in patients with early diabetic nephropathy[J]. Journal of Clinical Medicine in Practice, 2014, (3): 95-97. DOI: 10.7619/jcmp.201403032
    [10]CHENG Xinqin, XIANG Min. Relationship between oxidative stress and cellular adhesion molecule changes in diabetic patients with hyperglycemia crisis[J]. Journal of Clinical Medicine in Practice, 2014, (3): 23-25. DOI: 10.7619/jcmp.201403007
  • Cited by

    Periodical cited type(7)

    1. 高宇,沈聪. 中药面膜联合5-氨基酮戊酸光动力疗法及异维A酸治疗中重度痤疮. 中国美容医学. 2025(01): 87-91 .
    2. 袁秀丽,杨晓萌,田雅娟. 超分子水杨酸联合强脉冲光对中重度痤疮病人皮肤屏障功能及痤疮评分系统的影响. 安徽医药. 2025(04): 721-724 .
    3. 陈培元,李正,欧阳玲,林双娇,陈燕婷,宋维芳. ALA-PDT联合他克莫司软膏对玫瑰痤疮患者症状缓解时间及生活质量的影响. 中国医学创新. 2024(29): 101-104 .
    4. 王恩波,张庆瑞,胡玮. 5-氨基酮戊酸光动力疗法联合过氧化苯甲酰凝胶治疗面部中重度痤疮疗效观察. 中国美容医学. 2024(11): 48-51 .
    5. 刘华,韩婷梅,肖飞. 不同浓度5-氨基酮戊酸光动力疗法辅助治疗面部顽固性扁平疣的效果对比. 中国药物滥用防治杂志. 2024(11): 2074-2076 .
    6. 唐清宁. 光动力治疗非肿瘤性皮肤病的研究进展. 中国冶金工业医学杂志. 2023(05): 513-515 .
    7. 李昕. 光动力与红蓝光分别联合异维A酸治疗中重度痤疮的临床观察. 现代诊断与治疗. 2021(20): 3261-3263 .

    Other cited types(2)

Catalog

    Article views (375) PDF downloads (53) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return