Citation: | HU Xuehui, YAN Hong, WU Jihua, ZHAO Zhongli, WANG Xiaocui, YANG Bin. Analysis in expression profiles of circular RNA in plasma in children with pediatric type 2 spinal muscular atrophy[J]. Journal of Clinical Medicine in Practice, 2023, 27(2): 22-27, 34. DOI: 10.7619/jcmp.20222766 |
To analyze the change of expression profiles of circular RNA (circRNA) in plasma of children with pediatric type 2 spinal muscular atrophy (SMA).
From September 2021 to March 2022, five hospitalized children with pediatric type 2 SMA in the Department of Neurology of Anhui Provincial Children's Hospital were selected as SMA group, and five healthy controls in the same period were selected as control group. High throughput sequencing technology was used to detect and screen the differentially expressed circRNA in plasma, and bioinformatics was used for gene ontology (GO) annotation, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway enrichment analyses. Online database was used to predict the microRNAs (miRNA) that circRNA may target.
Compared with the control group, a total of 136 circRNA were significantly differentially expressed in the plasma of children with SMA (P < 0.05, fold change≥1.5), including 55 up-regulated and 81 down-regulated circRNA. Bioinformatics analysis revealed that pathways such as homologous recombination repair and DNA replication play important roles in the occurrence and development of SMA. TargetScan and miRanda software were used to predict the relationship between differentially expressed circRNA and miRNA, and the picture of the circRNA-miRNA regulatory networks was drawn.
There are differentially expressed circRNA between the SMA group and the control group. These circRNA may be involved in the occurrence and development of SMA, and may become potential molecular markers for novel diagnosis and treatment of SMA in the future.
[1] |
LI C, GENG Y, ZHU X, et al. The prevalence of spinal muscular atrophy carrier in China: evidences from epidemiological surveys[J]. Medicine (Baltimore), 2020, 99(5): e18975. doi: 10.1097/MD.0000000000018975
|
[2] |
EICHELBERGER E J, ALVES C R R, ZHANG R, et al. Increased systemic HSP70B levels in spinal muscular atrophy infants[J]. Ann Clin Transl Neurol, 2021, 8(7): 1495-1501. doi: 10.1002/acn3.51377
|
[3] |
MAASS P G, GLAŽAR P, MEMCZAK S, et al. A map of human circular RNAs in clinically relevant tissues[J]. J Mol Med (Berl), 2017, 95(11): 1179-1189. doi: 10.1007/s00109-017-1582-9
|
[4] |
KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
|
[5] |
JIANG L, WANG X, ZHAN X, et al. Advance in circular RNA modulation effects of heart failure[J]. Gene, 2020, 763S: 100036.
|
[6] |
CHEN B, HUANG S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer[J]. Cancer Letters, 2018, 418: 41-50. doi: 10.1016/j.canlet.2018.01.011
|
[7] |
GRAY L G, MILLS J D, CURRY-HYDE A, et al. Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy[J]. Front Genet, 2020, 11: 564301. doi: 10.3389/fgene.2020.564301
|
[8] |
CHEN D, HAO S, XU J. Revisiting the Relationship Between Alzheimer's Disease and Cancer With a circRNA Perspective[J]. Front Cell Dev Biol, 2021, 9: 647197. doi: 10.3389/fcell.2021.647197
|
[9] |
KUMAR L, SHAMSUZZAM A, JADIYA P, et al. Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson's Disease[J]. Mol Neurobiol, 2018, 55(8): 6914-6926. doi: 10.1007/s12035-018-0903-5
|
[10] |
IPARRAGUIRRE L, MUÑOZ-CULLA M, PRADA-LUENGO I, et al. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis[J]. Hum Mol Genet, 2017, 26(18): 3564-3572. doi: 10.1093/hmg/ddx243
|
[11] |
RAVNIK-GLAVA M, GLAVA D. Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis[J]. International Journal of Molecular Sciences, 2020, 21(5): 1714. doi: 10.3390/ijms21051714
|
[12] |
北京医学会医学遗传学分会, 北京罕见病诊疗与保障学会. 脊髓性肌萎缩症遗传学诊断专家共识[J]. 中华医学杂志, 2020, 100(40): 3130-3140. doi: 10.3760/cma.j.cn112137-20200803-02267
|
[13] |
杨东铃, 阮毅燕. 脊髓性肌萎缩症治疗研究进展[J]. 中国当代儿科杂志, 2022, 24(2): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DDKZ202202014.htm
|
[14] |
SINGH R N, SEO J, SINGH N N. RNA in spinal muscular atrophy: therapeutic implications of targeting[J]. Expert Opin Ther Targets, 2020, 24(8): 731-743. doi: 10.1080/14728222.2020.1783241
|
[15] |
LI Y, ZHENG Q, BAO C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-984. doi: 10.1038/cr.2015.82
|
[16] |
OJHA R, NANDANI R, CHATTERJEE N, et al. Emerging Role of Circular RNAs as potential biomarkers for the diagnosis of human diseases[J]. Adv Exp Med Biol, 2018, 1087: 141-157.
|
[17] |
VEA A, LLORENTE-CORTES V, DE GONZALO-CALVO D, et al. Circular RNAs in blood[J]. Adv Exp Med Biol, 2018, 1087: 119-130.
|
[18] |
JIANG M, LASH G E, ZHAO X, et al. CircRNA-0004904, CircRNA-0001855, and PAPP-A: potential novel biomarkers for the prediction of preeclampsia[J]. Cell Physiol Biochem, 2018, 46(6): 2576-2586. doi: 10.1159/000489685
|
[19] |
盛磊, 林慧, 仇妮, 等. 翠云草总黄酮经环状RNA circ_0006528通路抑制结直肠癌恶性生物学行为研究[J]. 实用临床医药杂志, 2022, 26(4): 106-113. doi: 10.7619/jcmp.20213680
|
[20] |
刘德慧, 严玉兰. 环状RNA在肺癌诊断及预后中的研究进展[J]. 实用临床医药杂志, 2021, 25(13): 124-128. doi: 10.7619/jcmp.20211851
|
[21] |
CHEN T H. Circulating microRNAs as potential biomarkers and therapeutic targets in spinal muscular atrophy[J]. Ther Adv Neurol Disord, 2020, 13: 1756286420979954.
|
[22] |
ABIUSI E, INFANTE P, CAGNOLI C, et al. SMA-miRs (miR-181a-5p, -324-5p, and -451a) are overexpressed in spinal muscular atrophy skeletal muscle and serum samples[J]. Elife, 2021, 10: e68054. doi: 10.7554/eLife.68054
|
[23] |
KYE M J, GONÇALVES IDO C. The role of miRNA in motor neuron disease[J]. Front Cell Neurosci, 2014, 8: 15.
|
[24] |
BONANNO S, MARCUZZO S, MALACARNE C, et al. Circulating MyomiRs as potential biomarkers to monitor response to nusinersen in pediatric SMA patients[J]. Biomedicines, 2020, 8(2): 21. doi: 10.3390/biomedicines8020021
|
[25] |
CATAPANO F, ZAHARIEVA I, SCOTO M, et al. Altered levels of microRNA-9, -206, and -132 in spinal muscular atrophy and their response to antisense oligonucleotide therapy[J]. Mol Ther Nucleic Acids, 2016, 5(7): e331.
|
[26] |
SISON S L, PATITUCCI T N, SEMINARY E R, et al. Astrocyte-produced miR-146a as a mediator of motor neuron loss in spinal muscular atrophy[J]. Hum Mol Genet, 2017, 26(17): 3409-3420. doi: 10.1093/hmg/ddx230
|
[27] |
张梦雅. 基于RNA测序的SMN1基因缺失型脊髓性肌肉萎缩症的可变剪接差异性分析[J]. 国际检验医学杂志, 2021, 42(23): 5-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GWSQ202123009.htm
|
[28] |
GODENA V K, NING K. Phosphatase and tensin homologue: a therapeutic target for SMA[J]. Signal Transduct Target Ther, 2017, 2: 17038. doi: 10.1038/sigtrans.2017.38
|
[29] |
KANNAN A, BHATIA K, BRANZEI D, et al. Combined deficiency of senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy[J]. Nucleic Acids Res, 2018, 46(16): 8326-8346. doi: 10.1093/nar/gky641
|
[30] |
TAKAKU M, TSUJITA T, HORIKOSHI N, et al. Purification of the human SMN-GEMIN2 complex and assessment of its stimulation of RAD51-mediated DNA recombination reactions[J]. Biochemistry, 2011, 50(32): 6797-805. doi: 10.1021/bi200828g
|
[31] |
TAY S H, ELLIEYANA E N, LE Y, et al. A novel zebrafish model for intermediate type spinal muscular atrophy demonstrates importance of Smn for maintenance of mature motor neurons[J]. Hum Mol Genet, 2021, 30(24): 2488-2502. doi: 10.1093/hmg/ddab212
|
1. |
魏靖杰,张逸鲲,苗斌. 益气活血通络汤治疗Wagner 1~3级糖尿病足疗效分析. 中国烧伤创疡杂志. 2025(01): 22-26 .
![]() | |
2. |
张盼,魏媛媛,王浩,王献伟,李彦青,孙雪. 裸花紫珠调控M2型巨噬细胞极化对糖尿病足溃疡大鼠伤口愈合及PI3K/AKT/mTOR通路的影响. 实用临床医药杂志. 2025(04): 44-49+54 .
![]() | |
3. |
李秀贞,王丛香,王猛. 足浴联合低频脉冲治疗对糖尿病高危足病变患者足背动脉血流量的影响. 河北中医. 2024(02): 238-241 .
![]() | |
4. |
蓝羚升,李莎,黄晓飞. 下肢动脉病变程度对富血小板凝胶治疗糖尿病足溃疡的影响. 实用临床医药杂志. 2024(07): 106-109 .
![]() | |
5. |
恽瑞元,严磊,刘琳. 超声清创术+外用重组人粒细胞巨细胞刺激因子凝胶剂对糖尿病足Wagner Ⅱ、Ⅲ级溃疡治疗效果及愈合情况分析. 糖尿病新世界. 2024(07): 179-182 .
![]() | |
6. |
王信,梅葵. 多功能超声清创机在糖尿病足溃疡中的临床应用. 糖尿病新世界. 2024(10): 16-19 .
![]() | |
7. |
李建华. 骨膜牵张技术配合中药治疗糖尿病足患者的效果. 中外医学研究. 2024(23): 51-55 .
![]() | |
8. |
林惠鑫. 中药足浴、足底穴位按摩及护理干预对早期糖尿病足的疗效观察. 黑龙江中医药. 2024(03): 139-140 .
![]() | |
9. |
周晓燕,郭丽珠,周友财. 基础治疗联合红蓝光、五黄液治疗对糖尿病足患者创面愈合及炎性因子的影响. 糖尿病新世界. 2024(19): 173-175+179 .
![]() | |
10. |
秦美玲,李媛媛,王丽娜,张炜. 红光照射联合改良负压封闭引流在糖尿病足溃疡患者中的应用. 河北医药. 2023(19): 3034-3036+3040 .
![]() | |
11. |
杨越,于文霞,何青敏,王猛,苏雪. 三黄血竭方外敷治疗糖尿病足溃疡疗效研究. 陕西中医. 2023(12): 1740-1744 .
![]() |