Citation: | XIANG Santing, WANG Wenping, LEI Fan, LI Qian, YU Feihong. Clinical application of shear wave elastography parameters in early assessment of neoadjuvant pathological response in patients with breast cancer[J]. Journal of Clinical Medicine in Practice, 2023, 27(16): 11-15. DOI: 10.7619/jcmp.20231371 |
To investigate the value of shear wave elastography (SWE) parameters in early prediction of pathological response to neoadjuvant chemotherapy (NAC) in invasive breast cancer.
A total of 96 patients with invasive breast cancer who received full course NAC treatment were included. Routine two-dimensional ultrasound and SWE were performed in patients before NAC and after the second cycle to obtain change rate of maximum lesion diameter at the end of the second cycle of NAC (ΔD), change rate of maximum elastic value at the end of the second cycle of NAC (ΔEmax) and change rate of average elastic value at the end of secondcycle of NAC(ΔEmean). All patients were treated surgically and were divided into pathological complete response (PCR) group(n=33) and non-PCR group(n=63) according to Miller&Payne's pathological grade. The clinicopathological data and elastic quantitative parameters of the two groups were compared. Receiver operating characteristic (ROC) curves were plotted to analyze and compare their predictive efficacy.
Multivariate Logistic regression analysis showed that human epidermal growth factor receptor 2 (HER2) and ΔEmax were independent predictors of NAC pathological response (OR=6.25, P < 0.05; OR=3.72, P < 0.05). The prediction efficiency of the combined model of HER2 and ΔEmax was optimal, with the area under the curve (AUC) of 0.87 (95%CI, 0.79 to 0.94).
The change rates of SWE elastic parameters have predictive value in the early stage of NAC for breast cancer. The combined HER2 and ΔEmax model can improve the diagnostic efficiency in predicting the pathological response of NAC.
[1] |
GRADISHAR W J, ANDERSON B O, ABRAHAM J, et al. Breast cancer, version 3.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(4): 452-478. doi: 10.6004/jnccn.2020.0016
|
[2] |
CORTAZAR P, ZHANG L J, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. doi: 10.1016/S0140-6736(13)62422-8
|
[3] |
DENIS M, BAYAT M, MEHRMOHAMMADI M, et al. Update on breast cancer detection using comb-push ultrasound shear elastography[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2015, 62(9): 1644-1650. doi: 10.1109/TUFFC.2015.007043
|
[4] |
张晶. 结合超声剪切波弹性及动态光学乳腺成像评价HIF-1α/TWIST-1/ITGB-1在乳腺癌新辅助化疗病理反应中的预测价值[D]. 沈阳: 中国医科大学, 2021.
|
[5] |
郭凌娟, 谭志巍, 周洋, 等. 剪切波弹性成像在乳腺结节诊断和引导穿刺活检中的应用价值[J]. 中国超声医学杂志, 2022, 38(8): 851-854. doi: 10.3969/j.issn.1002-0101.2022.08.004
|
[6] |
BUTCHER D T, ALLISTON T, WEAVER V M. A tense situation: forcing tumour progression[J]. Nat Rev Cancer, 2009, 9(2): 108-122. doi: 10.1038/nrc2544
|
[7] |
YUAN S S, SHAO H, NA Z Y, et al. Value of shear wave elasticity in predicting the efficacy of neoadjuvant chemotherapy in different molecular types[J]. Clin Imaging, 2022, 89: 97-103. doi: 10.1016/j.clinimag.2022.06.008
|
[8] |
MA Y, ZHANG S, LI J, et al. Comparison of strain and shear-wave ultrasounic elastography in predicting the pathological response to neoadjuvant chemotherapy in breast cancers[J]. Eur Radiol, 2017, 27(6): 2282-2291. doi: 10.1007/s00330-016-4619-5
|
[9] |
VRIENS B E, DE VRIES B, LOBBES M B, et al. Ultrasound is at least as good as magnetic resonance imaging in predicting tumour size post-neoadjuvant chemotherapy in breast cancer[J]. Eur J Cancer, 2016, 52: 67-76. doi: 10.1016/j.ejca.2015.10.010
|
[10] |
ZHANG J, TAN X Y, ZHANG X T, et al. Efficacy of shear-wave elastography versus dynamic optical breast imaging for predicting the pathological response to neoadjuvant chemotherapy in breast cancer[J]. Eur J Radiol, 2020, 129: 109098. doi: 10.1016/j.ejrad.2020.109098
|
[11] |
GU J J, POLLEY E C, DENIS M, et al. Early assessment of shear wave elastography parameters foresees the response to neoadjuvant chemotherapy in patients with invasive breast cancer[J]. Breast Cancer Res, 2021, 23(1): 52. doi: 10.1186/s13058-021-01429-4
|
[12] |
KATYAN A, MITTAL M K, MANI C, et al. Strain wave elastography in response assessment to neo-adjuvant chemotherapy in patients with locally advanced breast cancer[J]. Br J Radiol, 2019, 92(1099): 20180515. doi: 10.1259/bjr.20180515
|
[13] |
彭娟, 邓倾, 曹省, 等. 超声定量参数早期预测乳腺癌新辅助化疗效果的价值[J]. 中华超声影像学杂志, 2021, 30(6): 513-518. doi: 10.3760/cma.j.cn131148-20201230-00988
|
[14] |
LIU Y, WANG Y, WANG Y X, et al. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: a multicentre, retrospective cohort study[J]. E Clinical Medicine, 2022, 52: 101562.
|
[15] |
黄丹凤, 唐丽娜, 沈友洪, 等. 剪切波弹性成像预测乳腺癌新辅助化疗病理反应性的效能分析[J]. 中华超声影像学杂志, 2021, 30(8): 715-720.
|
1. |
方敏华. 三球式呼吸训练器训练应用于无创正压通气治疗慢性阻塞性肺疾病患者的效果分析. 基层医学论坛. 2024(11): 35-37 .
![]() | |
2. |
许明璐,杨萧含,刘倩楠,尹畅. 老年人慢性病共病关联规则分析. 实用临床医药杂志. 2024(13): 103-108 .
![]() | |
3. |
尹宁宁,王志娟,张海霞. 慢性阻塞性肺疾病患者并发心血管疾病危险因素及预测模型建立. 川北医学院学报. 2023(05): 608-612 .
![]() | |
4. |
陈婷,陈丹凤,翁克姬. 负荷拓展呼吸训练联合血糖控制对慢阻肺合并高血压患者肺功能及血压控制效果的影响. 心血管病防治知识. 2023(18): 83-85 .
![]() | |
5. |
黎玲,林丽芳. 自我管理对慢性阻塞性肺疾病合并高血压患者肺功能及生活质量的影响研究. 心血管病防治知识. 2023(22): 73-75 .
![]() | |
6. |
曾丹虹. 多学科协作干预对AECOPD合并高血压患者肺功能的影响. 心血管病防治知识. 2023(25): 42-44 .
![]() | |
7. |
陈春红. 自我管理对慢性阻塞性肺疾病合并高血压患者肺功能及生活质量的影响. 心血管病防治知识. 2022(06): 65-67 .
![]() | |
8. |
陈芳,孙莲. 老年高血压伴慢性阻塞性肺疾病患者临床研究进展. 实用医院临床杂志. 2022(03): 229-231 .
![]() | |
9. |
王龙龙,许淑娣,马洪鸽,马静文,王警建,杨淑涵,张明. 慢性阻塞性肺疾病合并抑郁患者的脑皮质边缘环路研究. 实用临床医药杂志. 2022(11): 38-41 .
![]() | |
10. |
石婷婷,刘双全,高晓华,张锋英. 慢性阻塞性肺疾病合并社区获得性肺炎患者的临床特征及其影响因素分析. 医学信息. 2022(19): 38-42 .
![]() |