ZHANG Jiangnan, LI Ronghua, ZHOU Hongmei, XU Minyi, CAI Liangyu. Establishment of a predictive model for the risk of deep vein thrombosis after orthopedic surgery in the lower extremities and its verification[J]. Journal of Clinical Medicine in Practice, 2023, 27(23): 73-78. DOI: 10.7619/jcmp.20231971
Citation: ZHANG Jiangnan, LI Ronghua, ZHOU Hongmei, XU Minyi, CAI Liangyu. Establishment of a predictive model for the risk of deep vein thrombosis after orthopedic surgery in the lower extremities and its verification[J]. Journal of Clinical Medicine in Practice, 2023, 27(23): 73-78. DOI: 10.7619/jcmp.20231971

Establishment of a predictive model for the risk of deep vein thrombosis after orthopedic surgery in the lower extremities and its verification

More Information
  • Received Date: June 19, 2023
  • Revised Date: September 08, 2023
  • Available Online: December 25, 2023
  • Objective 

    To construct and validate a predictive model for the risk of deep vein thrombosis (DVT) after lower extremity orthopedic surgery.

    Methods 

    Clinical records of hospitalized patients who underwent lower extremity orthopedic surgery in Wuxi Traditional Chinese Medicine Hospital from January 2017 to October 2019 were collected. The univariate and multivariate analysis with the backward stepwise method were applied to screen variables and build a nomogram prediction model, and the performance of the nomogram was evaluated with respect to its discriminant capability, calibration ability, and clinical utility.

    Results 

    A total of 5 773 hospitalized patients with orthopedic surgery of lower extremity were included in the study, with the incidence of DVT of 0.9%. Through single factor and multi-factor stepwise regression analysis, 5 variables were selected from 31 variables to construct the prediction model, including age, mean corpuscular hemoglobin concentration(MCHC), D-dimer, platelet distribution width(PDW), and thrombin time (TT). The receiver operating characteristic (ROC) curve showed that areas under the ROC curve in the training and validation cohort were 0.859 and 0.857, respectively. The model had good calibration ability and clinical practicability.

    Conclusion 

    The DVT risk prediction model constructed in this study has good differentiation ability, calibration ability and clinical practicability, which is helpful for doctors to classify DVT patients after lower extremity orthopedic surgery and formulate early treatment plan.

  • [1]
    DOLL H, GENTILE B, BUSH E N, et al. Evaluation of the measurement properties of four performance outcome measures in patients with elective hip replacements, elective knee replacements, or hip fractures[J]. Value Health, 2018, 21(9): 1104-1114. doi: 10.1016/j.jval.2018.02.006
    [2]
    GEERTS W H, PINEO G F, HEIT J A, et al. Prevention of venous thromboembolism: the seventh ACCP conference on antithrombotic and thrombolytic therapy[J]. Chest, 2004, 126(3 Suppl): 338S-400S.
    [3]
    王虎, 付亚辉, 尚昆, 等. 单一下肢骨折患者住院期间深静脉血栓发生率及分布特点[J]. 骨科临床与研究杂志, 2017, 2(3): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-GKLC201703006.htm
    [4]
    王义龙, 姚永远, 贺海明, 等. 超声联合神经刺激器下腰丛-坐骨神经阻滞对老年下肢骨科手术患者的作用及其SAS评分的影响[J]. 检验医学与临床, 2018, 15(12): 1723-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-JYYL201812009.htm
    [5]
    NGARMUKOS S, KIM K I, WONGSAK S, et al. Asia-Pacific venous thromboembolism consensus in knee and hip arthroplasty and hip fracture surgery: part 1. Diagnosis and risk factors[J]. Knee Surg Relat Res, 2021, 33(1): 18. doi: 10.1186/s43019-021-00099-y
    [6]
    SCARVELIS D, WELLS P S. Diagnosis and treatment of deep-vein thrombosis[J]. CMAJ, 2006, 175(9): 1087-1092. doi: 10.1503/cmaj.060366
    [7]
    BATES S M, JAESCHKE R, STEVENS S M, et al. Diagnosis of DVT: antithrombotic therapy and prevention of thrombosis, 9th Ed: American college of chest physicians evidence-based clinical practice guidelines[J]. Chest, 2012, 141(2 Suppl): e351S-e418S.
    [8]
    LIU H, YUAN H, WANG Y M, et al. Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients[J]. Sci Rep, 2021, 11(1): 12868. doi: 10.1038/s41598-021-92287-9
    [9]
    LINNEMANN B, WEINGARZ L, SCHINDEWOLF M, et al. Prevalence of established risk factors for venous thromboembolism according to age[J]. J Vasc Surg Venous Lymphat Disord, 2014, 2(2): 131-139. doi: 10.1016/j.jvsv.2013.09.006
    [10]
    RILEY R D, ENSOR J, SNELL K I E, et al. Calculating the sample size required for developing a clinical prediction model[J]. BMJ, 2020, 368: m441.
    [11]
    SILVERSTEIN M D, HEIT J A, MOHR D N, et al. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study[J]. Arch Intern Med, 1998, 158(6): 585-593. doi: 10.1001/archinte.158.6.585
    [12]
    张颖, 潘亚娟, 刘艳, 等. 术中干预对骨科患者术后住院期间发生下肢深静脉血栓的预防作用[J]. 血管与腔内血管外科杂志, 2022, 8(12): 1513-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-XGQW202307014.htm
    [13]
    WU J X, QING J H, YAO Y, et al. Performance of age-adjusted D-dimer values for predicting DVT before the knee and hip arthroplasty[J]. J Orthop Surg Res, 2021, 16(1): 82. doi: 10.1186/s13018-020-02172-w
    [14]
    BROEN K, SCHOLTES B, VOSSEN R. Predicting the need for further thrombosis diagnostics in suspected DVT is increased by using age adjusted D-dimer values[J]. Thromb Res, 2016, 145: 107-108. doi: 10.1016/j.thromres.2016.08.011
    [15]
    WANG X F, JIANG Z, LI Y F, et al. Prevalence of preoperative Deep Venous Thrombosis (DVT) following elderly intertrochanteric fractures and development of a risk prediction model[J]. BMC Musculoskelet Disord, 2022, 23(1): 417. doi: 10.1186/s12891-022-05381-y
    [16]
    REZENDE S M, LIJFERING W M, ROSENDAAL F R, et al. Hematologic variables and venous thrombosis: red cell distribution width and blood monocyte count are associated with an increased risk[J]. Haematologica, 2014, 99(1): 194-200. doi: 10.3324/haematol.2013.083840
    [17]
    CONTRERAS-LUJÁN E E, GARCÍA-GUERRERO E E, LÓPEZ-BONILLA O R, et al. Evaluation of machine learning algorithms for early diagnosis of deep venous thrombosis[J]. Math Comput Appl, 2022, 27(2): 24.
    [18]
    戎毅, 王浩阗, 李绍烁, 等. 机器学习筛选生物标志物诊治下肢深静脉血栓的研究进展[J]. 分子诊断与治疗杂志, 2023, 15(2): 357-360. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYQ202302043.htm
    [19]
    PENG G X, WANG Q, SUN H, et al. Development and prospective validation of a novel risk score for predicting the risk of lower extremity deep vein thrombosis among multiple trauma patients[J]. Thromb Res, 2021, 201: 116-122. doi: 10.1016/j.thromres.2021.02.020
    [20]
    RABINOVICH A, DUCRUET T, KAHN S R, et al. Development of a clinical prediction model for the postthrombotic syndrome in a prospective cohort of patients with proximal deep vein thrombosis[J]. J Thromb Haemost, 2018, 16(2): 262-270. doi: 10.1111/jth.13909
    [21]
    JANSSEN K J, VERGOUWE Y, DONDERS A R, et al. Dealing with missing predictor values when applying clinical prediction models[J]. Clin Chem, 2009, 55(5): 994-1001. doi: 10.1373/clinchem.2008.115345
  • Related Articles

    [1]WANG Jingjing, WU Su, CAI Guilan, ZHEN Yong. Construction and application of a risk prediction model for lower limb deep vein thrombosis in patients with aneurysmal subarachnoid hemorrhage[J]. Journal of Clinical Medicine in Practice, 2024, 28(19): 95-99, 104. DOI: 10.7619/jcmp.20241629
    [2]ZHU Huayuan, ZHANG Yajuan, SUN Qian, HUANG Yan, YANG Bingyin. Establishment of a Nomogram prediction model for chronic constipation patients based on body position exercise training[J]. Journal of Clinical Medicine in Practice, 2024, 28(17): 109-113. DOI: 10.7619/jcmp.20241488
    [3]LIU Haijia, CHEN Ming, LI Yanzhen. Analysis in risk factors of postoperative recurrence of patients with refractory epilepsy and establishment of a risk prediction model[J]. Journal of Clinical Medicine in Practice, 2024, 28(8): 7-11. DOI: 10.7619/jcmp.20240080
    [4]ZHANG Jiangnan, LI Ronghua, ZHOU Hongmei, XU Minyi, CAI Liangyu. Establishment of a predictive model for the risk of deep vein thrombosis after orthopedic surgery in the lower extremities and its verification[J]. Journal of Clinical Medicine in Practice, 2023, 27(23): 73-78. DOI: 10.7619/jcmp.20231971
    [5]SONG Feng, FANG Canjun, HU Jing, CHEN Yi. Risk factors of preoperative deep venous thrombosis in young and middle-aged patients with hip fracture and construction of a Nomogram predictive model[J]. Journal of Clinical Medicine in Practice, 2023, 27(12): 32-37. DOI: 10.7619/jcmp.20230579
    [6]REN Yuanyuan, DING Fu, XU Zhihui, FU Rongjuan. Research status of fall risk prediction models for inpatients[J]. Journal of Clinical Medicine in Practice, 2023, 27(8): 144-148. DOI: 10.7619/jcmp.20230036
    [7]ZHANG Wei, LI Yang. Value of color Doppler ultrasound combined with coagulation indexes detection in predicting deep venous thrombosis of lower limbs after fracture[J]. Journal of Clinical Medicine in Practice, 2022, 26(24): 20-23. DOI: 10.7619/jcmp.20222678
    [8]SHAO Chao, GAO Wencan, ZHANG Jun, SHEN Bin, XU Jianwei, YIN Kai. Establishment of prediction model of deep venous thrombosis formation of lower extremity after general surgery[J]. Journal of Clinical Medicine in Practice, 2022, 26(22): 12-15, 19. DOI: 10.7619/jcmp.20221634
    [9]ZANG Peng, LI Jinxia, LI Ji, ZHANG Huizhi, GU Yan. Experimental study of Huangqi Guizhi Wuwu Decoctionin prevention and treatment of rats model with deep venous thrombosis[J]. Journal of Clinical Medicine in Practice, 2022, 26(13): 12-17. DOI: 10.7619/jcmp.20220385
    [10]DONG Yanping, WANG Jiemin, WANG Yujin, REN Yali, DONG Yucheng, YONG Yanjun, SU Xuandi, WANG Jixiang, SU Nan, WANG Fuli, XIA Duosheng. Construction and evaluation of Nomogram prediction model for postoperative recurrence of pterygium[J]. Journal of Clinical Medicine in Practice, 2022, 26(7): 52-56. DOI: 10.7619/jcmp.20214610
  • Cited by

    Periodical cited type(6)

    1. 黄晨岚. 25羟维生素D、超敏c反应蛋白、估计肾小球滤过率与脑萎缩相关性的临床研究. 黑龙江医药. 2024(01): 44-47 .
    2. 桂千,侯晓夏,徐勤荣,冯红选,吴冠会,卢艳丽,程庆璋. 脑微出血与非关键部位脑梗死患者认知功能的相关性. 实用临床医药杂志. 2023(13): 43-47+52 . 本站查看
    3. 蹇秋枫,徐荣华,姚倩,周媛媛. 中国老年脑卒中患者认知障碍患病率和影响因素的Meta分析. 中国全科医学. 2023(32): 4070-4079+4088 .
    4. 李梦洁,肖佳男,刘文娟,练芮含,张丽秀. 外周血1, 25-(OH)_2D_3、神经元特异性烯醇化酶、神经胶质纤维酸性蛋白在小儿复杂性惊厥中的表达意义. 中国儿童保健杂志. 2023(11): 1254-1259 .
    5. 张丽. 脑梗死后认知功能损害与神经功能恢复及生活质量的相关性研究. 临床研究. 2022(08): 77-80 .
    6. 雷霄明,薛孟周,夏彬,李晶,郭平平. 血清25-羟维生素D和脂联素与脑白质损伤患者认知功能的相关性研究. 实用临床医药杂志. 2022(19): 33-37 . 本站查看

    Other cited types(1)

Catalog

    Article views (137) PDF downloads (10) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return